ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemcl GIF version

Theorem caucvgprlemcl 7851
Description: Lemma for caucvgpr 7857. The putative limit is a positive real. (Contributed by Jim Kingdon, 26-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemcl (𝜑𝐿P)
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑙   𝑢,𝐹,𝑗   𝑛,𝐹,𝑘   𝑗,𝑘,𝐿   𝑘,𝑛
Allowed substitution hints:   𝜑(𝑢,𝑗,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝐿(𝑢,𝑛,𝑙)

Proof of Theorem caucvgprlemcl
Dummy variables 𝑠 𝑎 𝑐 𝑑 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgpr.f . . . 4 (𝜑𝐹:NQ)
2 caucvgpr.cau . . . 4 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
3 caucvgpr.bnd . . . . 5 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
4 fveq2 5623 . . . . . . 7 (𝑗 = 𝑎 → (𝐹𝑗) = (𝐹𝑎))
54breq2d 4094 . . . . . 6 (𝑗 = 𝑎 → (𝐴 <Q (𝐹𝑗) ↔ 𝐴 <Q (𝐹𝑎)))
65cbvralv 2765 . . . . 5 (∀𝑗N 𝐴 <Q (𝐹𝑗) ↔ ∀𝑎N 𝐴 <Q (𝐹𝑎))
73, 6sylib 122 . . . 4 (𝜑 → ∀𝑎N 𝐴 <Q (𝐹𝑎))
8 caucvgpr.lim . . . . 5 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
9 opeq1 3856 . . . . . . . . . . . . 13 (𝑗 = 𝑎 → ⟨𝑗, 1o⟩ = ⟨𝑎, 1o⟩)
109eceq1d 6706 . . . . . . . . . . . 12 (𝑗 = 𝑎 → [⟨𝑗, 1o⟩] ~Q = [⟨𝑎, 1o⟩] ~Q )
1110fveq2d 5627 . . . . . . . . . . 11 (𝑗 = 𝑎 → (*Q‘[⟨𝑗, 1o⟩] ~Q ) = (*Q‘[⟨𝑎, 1o⟩] ~Q ))
1211oveq2d 6010 . . . . . . . . . 10 (𝑗 = 𝑎 → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )))
1312, 4breq12d 4095 . . . . . . . . 9 (𝑗 = 𝑎 → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎)))
1413cbvrexv 2766 . . . . . . . 8 (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎))
1514a1i 9 . . . . . . 7 (𝑙Q → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎)))
1615rabbiia 2784 . . . . . 6 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} = {𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎)}
174, 11oveq12d 6012 . . . . . . . . . 10 (𝑗 = 𝑎 → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )))
1817breq1d 4092 . . . . . . . . 9 (𝑗 = 𝑎 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢))
1918cbvrexv 2766 . . . . . . . 8 (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑎N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢)
2019a1i 9 . . . . . . 7 (𝑢Q → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑎N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢))
2120rabbiia 2784 . . . . . 6 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} = {𝑢Q ∣ ∃𝑎N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}
2216, 21opeq12i 3861 . . . . 5 ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩ = ⟨{𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎)}, {𝑢Q ∣ ∃𝑎N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩
238, 22eqtri 2250 . . . 4 𝐿 = ⟨{𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎)}, {𝑢Q ∣ ∃𝑎N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩
241, 2, 7, 23caucvgprlemm 7843 . . 3 (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
25 ssrab2 3309 . . . . . 6 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ⊆ Q
26 nqex 7538 . . . . . . 7 Q ∈ V
2726elpw2 4240 . . . . . 6 ({𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ 𝒫 Q ↔ {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ⊆ Q)
2825, 27mpbir 146 . . . . 5 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ 𝒫 Q
29 ssrab2 3309 . . . . . 6 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ⊆ Q
3026elpw2 4240 . . . . . 6 ({𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ 𝒫 Q ↔ {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ⊆ Q)
3129, 30mpbir 146 . . . . 5 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ 𝒫 Q
32 opelxpi 4748 . . . . 5 (({𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ 𝒫 Q ∧ {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ 𝒫 Q) → ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩ ∈ (𝒫 Q × 𝒫 Q))
3328, 31, 32mp2an 426 . . . 4 ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩ ∈ (𝒫 Q × 𝒫 Q)
348, 33eqeltri 2302 . . 3 𝐿 ∈ (𝒫 Q × 𝒫 Q)
3524, 34jctil 312 . 2 (𝜑 → (𝐿 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿))))
361, 2, 7, 23caucvgprlemrnd 7848 . . 3 (𝜑 → (∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))))
37 breq1 4085 . . . . . . 7 (𝑛 = 𝑐 → (𝑛 <N 𝑘𝑐 <N 𝑘))
38 fveq2 5623 . . . . . . . . 9 (𝑛 = 𝑐 → (𝐹𝑛) = (𝐹𝑐))
39 opeq1 3856 . . . . . . . . . . . 12 (𝑛 = 𝑐 → ⟨𝑛, 1o⟩ = ⟨𝑐, 1o⟩)
4039eceq1d 6706 . . . . . . . . . . 11 (𝑛 = 𝑐 → [⟨𝑛, 1o⟩] ~Q = [⟨𝑐, 1o⟩] ~Q )
4140fveq2d 5627 . . . . . . . . . 10 (𝑛 = 𝑐 → (*Q‘[⟨𝑛, 1o⟩] ~Q ) = (*Q‘[⟨𝑐, 1o⟩] ~Q ))
4241oveq2d 6010 . . . . . . . . 9 (𝑛 = 𝑐 → ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) = ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))
4338, 42breq12d 4095 . . . . . . . 8 (𝑛 = 𝑐 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ↔ (𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))))
4438, 41oveq12d 6012 . . . . . . . . 9 (𝑛 = 𝑐 → ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) = ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))
4544breq2d 4094 . . . . . . . 8 (𝑛 = 𝑐 → ((𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ↔ (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))))
4643, 45anbi12d 473 . . . . . . 7 (𝑛 = 𝑐 → (((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q ))) ↔ ((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))))
4737, 46imbi12d 234 . . . . . 6 (𝑛 = 𝑐 → ((𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))) ↔ (𝑐 <N 𝑘 → ((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))))))
48 breq2 4086 . . . . . . 7 (𝑘 = 𝑑 → (𝑐 <N 𝑘𝑐 <N 𝑑))
49 fveq2 5623 . . . . . . . . . 10 (𝑘 = 𝑑 → (𝐹𝑘) = (𝐹𝑑))
5049oveq1d 6009 . . . . . . . . 9 (𝑘 = 𝑑 → ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) = ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))
5150breq2d 4094 . . . . . . . 8 (𝑘 = 𝑑 → ((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ↔ (𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))))
5249breq1d 4092 . . . . . . . 8 (𝑘 = 𝑑 → ((𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ↔ (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))))
5351, 52anbi12d 473 . . . . . . 7 (𝑘 = 𝑑 → (((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))) ↔ ((𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))))
5448, 53imbi12d 234 . . . . . 6 (𝑘 = 𝑑 → ((𝑐 <N 𝑘 → ((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))) ↔ (𝑐 <N 𝑑 → ((𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))))))
5547, 54cbvral2v 2778 . . . . 5 (∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))) ↔ ∀𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))))
562, 55sylib 122 . . . 4 (𝜑 → ∀𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))))
571, 56, 7, 23caucvgprlemdisj 7849 . . 3 (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
581, 2, 7, 23caucvgprlemloc 7850 . . 3 (𝜑 → ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
5936, 57, 583jca 1201 . 2 (𝜑 → ((∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))) ∧ ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) ∧ ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿)))))
60 elnp1st2nd 7651 . 2 (𝐿P ↔ ((𝐿 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿))) ∧ ((∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))) ∧ ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) ∧ ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))))
6135, 59, 60sylanbrc 417 1 (𝜑𝐿P)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  w3a 1002   = wceq 1395  wcel 2200  wral 2508  wrex 2509  {crab 2512  wss 3197  𝒫 cpw 3649  cop 3669   class class class wbr 4082   × cxp 4714  wf 5310  cfv 5314  (class class class)co 5994  1st c1st 6274  2nd c2nd 6275  1oc1o 6545  [cec 6668  Ncnpi 7447   <N clti 7450   ~Q ceq 7454  Qcnq 7455   +Q cplq 7457  *Qcrq 7459   <Q cltq 7460  Pcnp 7466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4377  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-1o 6552  df-oadd 6556  df-omul 6557  df-er 6670  df-ec 6672  df-qs 6676  df-ni 7479  df-pli 7480  df-mi 7481  df-lti 7482  df-plpq 7519  df-mpq 7520  df-enq 7522  df-nqqs 7523  df-plqqs 7524  df-mqqs 7525  df-1nqqs 7526  df-rq 7527  df-ltnqqs 7528  df-inp 7641
This theorem is referenced by:  caucvgprlemladdfu  7852  caucvgprlemladdrl  7853  caucvgprlem1  7854  caucvgprlem2  7855  caucvgpr  7857
  Copyright terms: Public domain W3C validator