ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemcl GIF version

Theorem caucvgprlemcl 7617
Description: Lemma for caucvgpr 7623. The putative limit is a positive real. (Contributed by Jim Kingdon, 26-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemcl (𝜑𝐿P)
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑙   𝑢,𝐹,𝑗   𝑛,𝐹,𝑘   𝑗,𝑘,𝐿   𝑘,𝑛
Allowed substitution hints:   𝜑(𝑢,𝑗,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝐿(𝑢,𝑛,𝑙)

Proof of Theorem caucvgprlemcl
Dummy variables 𝑠 𝑎 𝑐 𝑑 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgpr.f . . . 4 (𝜑𝐹:NQ)
2 caucvgpr.cau . . . 4 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
3 caucvgpr.bnd . . . . 5 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
4 fveq2 5486 . . . . . . 7 (𝑗 = 𝑎 → (𝐹𝑗) = (𝐹𝑎))
54breq2d 3994 . . . . . 6 (𝑗 = 𝑎 → (𝐴 <Q (𝐹𝑗) ↔ 𝐴 <Q (𝐹𝑎)))
65cbvralv 2692 . . . . 5 (∀𝑗N 𝐴 <Q (𝐹𝑗) ↔ ∀𝑎N 𝐴 <Q (𝐹𝑎))
73, 6sylib 121 . . . 4 (𝜑 → ∀𝑎N 𝐴 <Q (𝐹𝑎))
8 caucvgpr.lim . . . . 5 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
9 opeq1 3758 . . . . . . . . . . . . 13 (𝑗 = 𝑎 → ⟨𝑗, 1o⟩ = ⟨𝑎, 1o⟩)
109eceq1d 6537 . . . . . . . . . . . 12 (𝑗 = 𝑎 → [⟨𝑗, 1o⟩] ~Q = [⟨𝑎, 1o⟩] ~Q )
1110fveq2d 5490 . . . . . . . . . . 11 (𝑗 = 𝑎 → (*Q‘[⟨𝑗, 1o⟩] ~Q ) = (*Q‘[⟨𝑎, 1o⟩] ~Q ))
1211oveq2d 5858 . . . . . . . . . 10 (𝑗 = 𝑎 → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )))
1312, 4breq12d 3995 . . . . . . . . 9 (𝑗 = 𝑎 → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎)))
1413cbvrexv 2693 . . . . . . . 8 (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎))
1514a1i 9 . . . . . . 7 (𝑙Q → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎)))
1615rabbiia 2711 . . . . . 6 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} = {𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎)}
174, 11oveq12d 5860 . . . . . . . . . 10 (𝑗 = 𝑎 → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )))
1817breq1d 3992 . . . . . . . . 9 (𝑗 = 𝑎 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢))
1918cbvrexv 2693 . . . . . . . 8 (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑎N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢)
2019a1i 9 . . . . . . 7 (𝑢Q → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑎N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢))
2120rabbiia 2711 . . . . . 6 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} = {𝑢Q ∣ ∃𝑎N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}
2216, 21opeq12i 3763 . . . . 5 ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩ = ⟨{𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎)}, {𝑢Q ∣ ∃𝑎N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩
238, 22eqtri 2186 . . . 4 𝐿 = ⟨{𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎)}, {𝑢Q ∣ ∃𝑎N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩
241, 2, 7, 23caucvgprlemm 7609 . . 3 (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
25 ssrab2 3227 . . . . . 6 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ⊆ Q
26 nqex 7304 . . . . . . 7 Q ∈ V
2726elpw2 4136 . . . . . 6 ({𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ 𝒫 Q ↔ {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ⊆ Q)
2825, 27mpbir 145 . . . . 5 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ 𝒫 Q
29 ssrab2 3227 . . . . . 6 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ⊆ Q
3026elpw2 4136 . . . . . 6 ({𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ 𝒫 Q ↔ {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ⊆ Q)
3129, 30mpbir 145 . . . . 5 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ 𝒫 Q
32 opelxpi 4636 . . . . 5 (({𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ 𝒫 Q ∧ {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ 𝒫 Q) → ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩ ∈ (𝒫 Q × 𝒫 Q))
3328, 31, 32mp2an 423 . . . 4 ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩ ∈ (𝒫 Q × 𝒫 Q)
348, 33eqeltri 2239 . . 3 𝐿 ∈ (𝒫 Q × 𝒫 Q)
3524, 34jctil 310 . 2 (𝜑 → (𝐿 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿))))
361, 2, 7, 23caucvgprlemrnd 7614 . . 3 (𝜑 → (∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))))
37 breq1 3985 . . . . . . 7 (𝑛 = 𝑐 → (𝑛 <N 𝑘𝑐 <N 𝑘))
38 fveq2 5486 . . . . . . . . 9 (𝑛 = 𝑐 → (𝐹𝑛) = (𝐹𝑐))
39 opeq1 3758 . . . . . . . . . . . 12 (𝑛 = 𝑐 → ⟨𝑛, 1o⟩ = ⟨𝑐, 1o⟩)
4039eceq1d 6537 . . . . . . . . . . 11 (𝑛 = 𝑐 → [⟨𝑛, 1o⟩] ~Q = [⟨𝑐, 1o⟩] ~Q )
4140fveq2d 5490 . . . . . . . . . 10 (𝑛 = 𝑐 → (*Q‘[⟨𝑛, 1o⟩] ~Q ) = (*Q‘[⟨𝑐, 1o⟩] ~Q ))
4241oveq2d 5858 . . . . . . . . 9 (𝑛 = 𝑐 → ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) = ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))
4338, 42breq12d 3995 . . . . . . . 8 (𝑛 = 𝑐 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ↔ (𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))))
4438, 41oveq12d 5860 . . . . . . . . 9 (𝑛 = 𝑐 → ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) = ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))
4544breq2d 3994 . . . . . . . 8 (𝑛 = 𝑐 → ((𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ↔ (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))))
4643, 45anbi12d 465 . . . . . . 7 (𝑛 = 𝑐 → (((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q ))) ↔ ((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))))
4737, 46imbi12d 233 . . . . . 6 (𝑛 = 𝑐 → ((𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))) ↔ (𝑐 <N 𝑘 → ((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))))))
48 breq2 3986 . . . . . . 7 (𝑘 = 𝑑 → (𝑐 <N 𝑘𝑐 <N 𝑑))
49 fveq2 5486 . . . . . . . . . 10 (𝑘 = 𝑑 → (𝐹𝑘) = (𝐹𝑑))
5049oveq1d 5857 . . . . . . . . 9 (𝑘 = 𝑑 → ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) = ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))
5150breq2d 3994 . . . . . . . 8 (𝑘 = 𝑑 → ((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ↔ (𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))))
5249breq1d 3992 . . . . . . . 8 (𝑘 = 𝑑 → ((𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ↔ (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))))
5351, 52anbi12d 465 . . . . . . 7 (𝑘 = 𝑑 → (((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))) ↔ ((𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))))
5448, 53imbi12d 233 . . . . . 6 (𝑘 = 𝑑 → ((𝑐 <N 𝑘 → ((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))) ↔ (𝑐 <N 𝑑 → ((𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))))))
5547, 54cbvral2v 2705 . . . . 5 (∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))) ↔ ∀𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))))
562, 55sylib 121 . . . 4 (𝜑 → ∀𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))))
571, 56, 7, 23caucvgprlemdisj 7615 . . 3 (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
581, 2, 7, 23caucvgprlemloc 7616 . . 3 (𝜑 → ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
5936, 57, 583jca 1167 . 2 (𝜑 → ((∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))) ∧ ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) ∧ ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿)))))
60 elnp1st2nd 7417 . 2 (𝐿P ↔ ((𝐿 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿))) ∧ ((∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))) ∧ ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) ∧ ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))))
6135, 59, 60sylanbrc 414 1 (𝜑𝐿P)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  w3a 968   = wceq 1343  wcel 2136  wral 2444  wrex 2445  {crab 2448  wss 3116  𝒫 cpw 3559  cop 3579   class class class wbr 3982   × cxp 4602  wf 5184  cfv 5188  (class class class)co 5842  1st c1st 6106  2nd c2nd 6107  1oc1o 6377  [cec 6499  Ncnpi 7213   <N clti 7216   ~Q ceq 7220  Qcnq 7221   +Q cplq 7223  *Qcrq 7225   <Q cltq 7226  Pcnp 7232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-inp 7407
This theorem is referenced by:  caucvgprlemladdfu  7618  caucvgprlemladdrl  7619  caucvgprlem1  7620  caucvgprlem2  7621  caucvgpr  7623
  Copyright terms: Public domain W3C validator