| Step | Hyp | Ref
| Expression |
| 1 | | caucvgpr.f |
. . . 4
⊢ (𝜑 → 𝐹:N⟶Q) |
| 2 | | caucvgpr.cau |
. . . 4
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))))) |
| 3 | | caucvgpr.bnd |
. . . . 5
⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) |
| 4 | | fveq2 5561 |
. . . . . . 7
⊢ (𝑗 = 𝑎 → (𝐹‘𝑗) = (𝐹‘𝑎)) |
| 5 | 4 | breq2d 4046 |
. . . . . 6
⊢ (𝑗 = 𝑎 → (𝐴 <Q (𝐹‘𝑗) ↔ 𝐴 <Q (𝐹‘𝑎))) |
| 6 | 5 | cbvralv 2729 |
. . . . 5
⊢
(∀𝑗 ∈
N 𝐴
<Q (𝐹‘𝑗) ↔ ∀𝑎 ∈ N 𝐴 <Q (𝐹‘𝑎)) |
| 7 | 3, 6 | sylib 122 |
. . . 4
⊢ (𝜑 → ∀𝑎 ∈ N 𝐴 <Q (𝐹‘𝑎)) |
| 8 | | caucvgpr.lim |
. . . . 5
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 |
| 9 | | opeq1 3809 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑎 → 〈𝑗, 1o〉 = 〈𝑎,
1o〉) |
| 10 | 9 | eceq1d 6637 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑎 → [〈𝑗, 1o〉]
~Q = [〈𝑎, 1o〉]
~Q ) |
| 11 | 10 | fveq2d 5565 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑎 →
(*Q‘[〈𝑗, 1o〉]
~Q ) = (*Q‘[〈𝑎, 1o〉]
~Q )) |
| 12 | 11 | oveq2d 5941 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑎 → (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = (𝑙 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) |
| 13 | 12, 4 | breq12d 4047 |
. . . . . . . . 9
⊢ (𝑗 = 𝑎 → ((𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ (𝑙 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q (𝐹‘𝑎))) |
| 14 | 13 | cbvrexv 2730 |
. . . . . . . 8
⊢
(∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑎 ∈ N (𝑙 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q (𝐹‘𝑎)) |
| 15 | 14 | a1i 9 |
. . . . . . 7
⊢ (𝑙 ∈ Q →
(∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑎 ∈ N (𝑙 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q (𝐹‘𝑎))) |
| 16 | 15 | rabbiia 2748 |
. . . . . 6
⊢ {𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} = {𝑙 ∈ Q ∣ ∃𝑎 ∈ N (𝑙 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q (𝐹‘𝑎)} |
| 17 | 4, 11 | oveq12d 5943 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑎 → ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) |
| 18 | 17 | breq1d 4044 |
. . . . . . . . 9
⊢ (𝑗 = 𝑎 → (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢)) |
| 19 | 18 | cbvrexv 2730 |
. . . . . . . 8
⊢
(∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ∃𝑎 ∈ N ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢) |
| 20 | 19 | a1i 9 |
. . . . . . 7
⊢ (𝑢 ∈ Q →
(∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ∃𝑎 ∈ N ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢)) |
| 21 | 20 | rabbiia 2748 |
. . . . . 6
⊢ {𝑢 ∈ Q ∣
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} = {𝑢 ∈ Q ∣ ∃𝑎 ∈ N ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢} |
| 22 | 16, 21 | opeq12i 3814 |
. . . . 5
⊢
〈{𝑙 ∈
Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 = 〈{𝑙 ∈ Q ∣
∃𝑎 ∈
N (𝑙
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q (𝐹‘𝑎)}, {𝑢 ∈ Q ∣ ∃𝑎 ∈ N ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉 |
| 23 | 8, 22 | eqtri 2217 |
. . . 4
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑎 ∈ N (𝑙 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q (𝐹‘𝑎)}, {𝑢 ∈ Q ∣ ∃𝑎 ∈ N ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉 |
| 24 | 1, 2, 7, 23 | caucvgprlemm 7752 |
. . 3
⊢ (𝜑 → (∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝐿) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd
‘𝐿))) |
| 25 | | ssrab2 3269 |
. . . . . 6
⊢ {𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ⊆ Q |
| 26 | | nqex 7447 |
. . . . . . 7
⊢
Q ∈ V |
| 27 | 26 | elpw2 4191 |
. . . . . 6
⊢ ({𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ∈ 𝒫 Q ↔
{𝑙 ∈ Q
∣ ∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ⊆ Q) |
| 28 | 25, 27 | mpbir 146 |
. . . . 5
⊢ {𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ∈ 𝒫
Q |
| 29 | | ssrab2 3269 |
. . . . . 6
⊢ {𝑢 ∈ Q ∣
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ⊆
Q |
| 30 | 26 | elpw2 4191 |
. . . . . 6
⊢ ({𝑢 ∈ Q ∣
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ∈ 𝒫
Q ↔ {𝑢
∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ⊆
Q) |
| 31 | 29, 30 | mpbir 146 |
. . . . 5
⊢ {𝑢 ∈ Q ∣
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ∈ 𝒫
Q |
| 32 | | opelxpi 4696 |
. . . . 5
⊢ (({𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ∈ 𝒫 Q ∧
{𝑢 ∈ Q
∣ ∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ∈ 𝒫
Q) → 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 ∈ (𝒫
Q × 𝒫 Q)) |
| 33 | 28, 31, 32 | mp2an 426 |
. . . 4
⊢
〈{𝑙 ∈
Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 ∈ (𝒫
Q × 𝒫 Q) |
| 34 | 8, 33 | eqeltri 2269 |
. . 3
⊢ 𝐿 ∈ (𝒫
Q × 𝒫 Q) |
| 35 | 24, 34 | jctil 312 |
. 2
⊢ (𝜑 → (𝐿 ∈ (𝒫 Q ×
𝒫 Q) ∧ (∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝐿) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd
‘𝐿)))) |
| 36 | 1, 2, 7, 23 | caucvgprlemrnd 7757 |
. . 3
⊢ (𝜑 → (∀𝑠 ∈ Q (𝑠 ∈ (1st
‘𝐿) ↔
∃𝑟 ∈
Q (𝑠
<Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd
‘𝐿) ↔
∃𝑠 ∈
Q (𝑠
<Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿))))) |
| 37 | | breq1 4037 |
. . . . . . 7
⊢ (𝑛 = 𝑐 → (𝑛 <N 𝑘 ↔ 𝑐 <N 𝑘)) |
| 38 | | fveq2 5561 |
. . . . . . . . 9
⊢ (𝑛 = 𝑐 → (𝐹‘𝑛) = (𝐹‘𝑐)) |
| 39 | | opeq1 3809 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑐 → 〈𝑛, 1o〉 = 〈𝑐,
1o〉) |
| 40 | 39 | eceq1d 6637 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑐 → [〈𝑛, 1o〉]
~Q = [〈𝑐, 1o〉]
~Q ) |
| 41 | 40 | fveq2d 5565 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑐 →
(*Q‘[〈𝑛, 1o〉]
~Q ) = (*Q‘[〈𝑐, 1o〉]
~Q )) |
| 42 | 41 | oveq2d 5941 |
. . . . . . . . 9
⊢ (𝑛 = 𝑐 → ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) = ((𝐹‘𝑘) +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))) |
| 43 | 38, 42 | breq12d 4047 |
. . . . . . . 8
⊢ (𝑛 = 𝑐 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ↔ (𝐹‘𝑐) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )))) |
| 44 | 38, 41 | oveq12d 5943 |
. . . . . . . . 9
⊢ (𝑛 = 𝑐 → ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) = ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))) |
| 45 | 44 | breq2d 4046 |
. . . . . . . 8
⊢ (𝑛 = 𝑐 → ((𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ↔ (𝐹‘𝑘) <Q ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )))) |
| 46 | 43, 45 | anbi12d 473 |
. . . . . . 7
⊢ (𝑛 = 𝑐 → (((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))) ↔ ((𝐹‘𝑐) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))))) |
| 47 | 37, 46 | imbi12d 234 |
. . . . . 6
⊢ (𝑛 = 𝑐 → ((𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )))) ↔ (𝑐 <N 𝑘 → ((𝐹‘𝑐) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )))))) |
| 48 | | breq2 4038 |
. . . . . . 7
⊢ (𝑘 = 𝑑 → (𝑐 <N 𝑘 ↔ 𝑐 <N 𝑑)) |
| 49 | | fveq2 5561 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑑 → (𝐹‘𝑘) = (𝐹‘𝑑)) |
| 50 | 49 | oveq1d 5940 |
. . . . . . . . 9
⊢ (𝑘 = 𝑑 → ((𝐹‘𝑘) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) = ((𝐹‘𝑑) +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))) |
| 51 | 50 | breq2d 4046 |
. . . . . . . 8
⊢ (𝑘 = 𝑑 → ((𝐹‘𝑐) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ↔ (𝐹‘𝑐) <Q ((𝐹‘𝑑) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )))) |
| 52 | 49 | breq1d 4044 |
. . . . . . . 8
⊢ (𝑘 = 𝑑 → ((𝐹‘𝑘) <Q ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ↔ (𝐹‘𝑑) <Q ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )))) |
| 53 | 51, 52 | anbi12d 473 |
. . . . . . 7
⊢ (𝑘 = 𝑑 → (((𝐹‘𝑐) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))) ↔ ((𝐹‘𝑐) <Q ((𝐹‘𝑑) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ∧ (𝐹‘𝑑) <Q ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))))) |
| 54 | 48, 53 | imbi12d 234 |
. . . . . 6
⊢ (𝑘 = 𝑑 → ((𝑐 <N 𝑘 → ((𝐹‘𝑐) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )))) ↔ (𝑐 <N 𝑑 → ((𝐹‘𝑐) <Q ((𝐹‘𝑑) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ∧ (𝐹‘𝑑) <Q ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )))))) |
| 55 | 47, 54 | cbvral2v 2742 |
. . . . 5
⊢
(∀𝑛 ∈
N ∀𝑘
∈ N (𝑛
<N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )))) ↔ ∀𝑐 ∈ N ∀𝑑 ∈ N (𝑐 <N
𝑑 → ((𝐹‘𝑐) <Q ((𝐹‘𝑑) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ∧ (𝐹‘𝑑) <Q ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))))) |
| 56 | 2, 55 | sylib 122 |
. . . 4
⊢ (𝜑 → ∀𝑐 ∈ N ∀𝑑 ∈ N (𝑐 <N
𝑑 → ((𝐹‘𝑐) <Q ((𝐹‘𝑑) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ∧ (𝐹‘𝑑) <Q ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))))) |
| 57 | 1, 56, 7, 23 | caucvgprlemdisj 7758 |
. . 3
⊢ (𝜑 → ∀𝑠 ∈ Q ¬ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑠 ∈ (2nd
‘𝐿))) |
| 58 | 1, 2, 7, 23 | caucvgprlemloc 7759 |
. . 3
⊢ (𝜑 → ∀𝑠 ∈ Q ∀𝑟 ∈ Q (𝑠 <Q
𝑟 → (𝑠 ∈ (1st
‘𝐿) ∨ 𝑟 ∈ (2nd
‘𝐿)))) |
| 59 | 36, 57, 58 | 3jca 1179 |
. 2
⊢ (𝜑 → ((∀𝑠 ∈ Q (𝑠 ∈ (1st
‘𝐿) ↔
∃𝑟 ∈
Q (𝑠
<Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd
‘𝐿) ↔
∃𝑠 ∈
Q (𝑠
<Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)))) ∧ ∀𝑠 ∈ Q ¬
(𝑠 ∈ (1st
‘𝐿) ∧ 𝑠 ∈ (2nd
‘𝐿)) ∧
∀𝑠 ∈
Q ∀𝑟
∈ Q (𝑠
<Q 𝑟 → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑟 ∈ (2nd ‘𝐿))))) |
| 60 | | elnp1st2nd 7560 |
. 2
⊢ (𝐿 ∈ P ↔
((𝐿 ∈ (𝒫
Q × 𝒫 Q) ∧ (∃𝑠 ∈ Q 𝑠 ∈ (1st
‘𝐿) ∧
∃𝑟 ∈
Q 𝑟 ∈
(2nd ‘𝐿)))
∧ ((∀𝑠 ∈
Q (𝑠 ∈
(1st ‘𝐿)
↔ ∃𝑟 ∈
Q (𝑠
<Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd
‘𝐿) ↔
∃𝑠 ∈
Q (𝑠
<Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)))) ∧ ∀𝑠 ∈ Q ¬
(𝑠 ∈ (1st
‘𝐿) ∧ 𝑠 ∈ (2nd
‘𝐿)) ∧
∀𝑠 ∈
Q ∀𝑟
∈ Q (𝑠
<Q 𝑟 → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑟 ∈ (2nd ‘𝐿)))))) |
| 61 | 35, 59, 60 | sylanbrc 417 |
1
⊢ (𝜑 → 𝐿 ∈ P) |