ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemcl GIF version

Theorem caucvgprlemcl 7491
Description: Lemma for caucvgpr 7497. The putative limit is a positive real. (Contributed by Jim Kingdon, 26-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemcl (𝜑𝐿P)
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑙   𝑢,𝐹,𝑗   𝑛,𝐹,𝑘   𝑗,𝑘,𝐿   𝑘,𝑛
Allowed substitution hints:   𝜑(𝑢,𝑗,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝐿(𝑢,𝑛,𝑙)

Proof of Theorem caucvgprlemcl
Dummy variables 𝑠 𝑎 𝑐 𝑑 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgpr.f . . . 4 (𝜑𝐹:NQ)
2 caucvgpr.cau . . . 4 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
3 caucvgpr.bnd . . . . 5 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
4 fveq2 5421 . . . . . . 7 (𝑗 = 𝑎 → (𝐹𝑗) = (𝐹𝑎))
54breq2d 3941 . . . . . 6 (𝑗 = 𝑎 → (𝐴 <Q (𝐹𝑗) ↔ 𝐴 <Q (𝐹𝑎)))
65cbvralv 2654 . . . . 5 (∀𝑗N 𝐴 <Q (𝐹𝑗) ↔ ∀𝑎N 𝐴 <Q (𝐹𝑎))
73, 6sylib 121 . . . 4 (𝜑 → ∀𝑎N 𝐴 <Q (𝐹𝑎))
8 caucvgpr.lim . . . . 5 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
9 opeq1 3705 . . . . . . . . . . . . 13 (𝑗 = 𝑎 → ⟨𝑗, 1o⟩ = ⟨𝑎, 1o⟩)
109eceq1d 6465 . . . . . . . . . . . 12 (𝑗 = 𝑎 → [⟨𝑗, 1o⟩] ~Q = [⟨𝑎, 1o⟩] ~Q )
1110fveq2d 5425 . . . . . . . . . . 11 (𝑗 = 𝑎 → (*Q‘[⟨𝑗, 1o⟩] ~Q ) = (*Q‘[⟨𝑎, 1o⟩] ~Q ))
1211oveq2d 5790 . . . . . . . . . 10 (𝑗 = 𝑎 → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )))
1312, 4breq12d 3942 . . . . . . . . 9 (𝑗 = 𝑎 → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎)))
1413cbvrexv 2655 . . . . . . . 8 (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎))
1514a1i 9 . . . . . . 7 (𝑙Q → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎)))
1615rabbiia 2671 . . . . . 6 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} = {𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎)}
174, 11oveq12d 5792 . . . . . . . . . 10 (𝑗 = 𝑎 → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )))
1817breq1d 3939 . . . . . . . . 9 (𝑗 = 𝑎 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢))
1918cbvrexv 2655 . . . . . . . 8 (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑎N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢)
2019a1i 9 . . . . . . 7 (𝑢Q → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑎N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢))
2120rabbiia 2671 . . . . . 6 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} = {𝑢Q ∣ ∃𝑎N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}
2216, 21opeq12i 3710 . . . . 5 ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩ = ⟨{𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎)}, {𝑢Q ∣ ∃𝑎N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩
238, 22eqtri 2160 . . . 4 𝐿 = ⟨{𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎)}, {𝑢Q ∣ ∃𝑎N ((𝐹𝑎) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩
241, 2, 7, 23caucvgprlemm 7483 . . 3 (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
25 ssrab2 3182 . . . . . 6 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ⊆ Q
26 nqex 7178 . . . . . . 7 Q ∈ V
2726elpw2 4082 . . . . . 6 ({𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ 𝒫 Q ↔ {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ⊆ Q)
2825, 27mpbir 145 . . . . 5 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ 𝒫 Q
29 ssrab2 3182 . . . . . 6 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ⊆ Q
3026elpw2 4082 . . . . . 6 ({𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ 𝒫 Q ↔ {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ⊆ Q)
3129, 30mpbir 145 . . . . 5 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ 𝒫 Q
32 opelxpi 4571 . . . . 5 (({𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ 𝒫 Q ∧ {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ 𝒫 Q) → ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩ ∈ (𝒫 Q × 𝒫 Q))
3328, 31, 32mp2an 422 . . . 4 ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩ ∈ (𝒫 Q × 𝒫 Q)
348, 33eqeltri 2212 . . 3 𝐿 ∈ (𝒫 Q × 𝒫 Q)
3524, 34jctil 310 . 2 (𝜑 → (𝐿 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿))))
361, 2, 7, 23caucvgprlemrnd 7488 . . 3 (𝜑 → (∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))))
37 breq1 3932 . . . . . . 7 (𝑛 = 𝑐 → (𝑛 <N 𝑘𝑐 <N 𝑘))
38 fveq2 5421 . . . . . . . . 9 (𝑛 = 𝑐 → (𝐹𝑛) = (𝐹𝑐))
39 opeq1 3705 . . . . . . . . . . . 12 (𝑛 = 𝑐 → ⟨𝑛, 1o⟩ = ⟨𝑐, 1o⟩)
4039eceq1d 6465 . . . . . . . . . . 11 (𝑛 = 𝑐 → [⟨𝑛, 1o⟩] ~Q = [⟨𝑐, 1o⟩] ~Q )
4140fveq2d 5425 . . . . . . . . . 10 (𝑛 = 𝑐 → (*Q‘[⟨𝑛, 1o⟩] ~Q ) = (*Q‘[⟨𝑐, 1o⟩] ~Q ))
4241oveq2d 5790 . . . . . . . . 9 (𝑛 = 𝑐 → ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) = ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))
4338, 42breq12d 3942 . . . . . . . 8 (𝑛 = 𝑐 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ↔ (𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))))
4438, 41oveq12d 5792 . . . . . . . . 9 (𝑛 = 𝑐 → ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) = ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))
4544breq2d 3941 . . . . . . . 8 (𝑛 = 𝑐 → ((𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ↔ (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))))
4643, 45anbi12d 464 . . . . . . 7 (𝑛 = 𝑐 → (((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q ))) ↔ ((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))))
4737, 46imbi12d 233 . . . . . 6 (𝑛 = 𝑐 → ((𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))) ↔ (𝑐 <N 𝑘 → ((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))))))
48 breq2 3933 . . . . . . 7 (𝑘 = 𝑑 → (𝑐 <N 𝑘𝑐 <N 𝑑))
49 fveq2 5421 . . . . . . . . . 10 (𝑘 = 𝑑 → (𝐹𝑘) = (𝐹𝑑))
5049oveq1d 5789 . . . . . . . . 9 (𝑘 = 𝑑 → ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) = ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))
5150breq2d 3941 . . . . . . . 8 (𝑘 = 𝑑 → ((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ↔ (𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))))
5249breq1d 3939 . . . . . . . 8 (𝑘 = 𝑑 → ((𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ↔ (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))))
5351, 52anbi12d 464 . . . . . . 7 (𝑘 = 𝑑 → (((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))) ↔ ((𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))))
5448, 53imbi12d 233 . . . . . 6 (𝑘 = 𝑑 → ((𝑐 <N 𝑘 → ((𝐹𝑐) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))) ↔ (𝑐 <N 𝑑 → ((𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))))))
5547, 54cbvral2v 2665 . . . . 5 (∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))) ↔ ∀𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))))
562, 55sylib 121 . . . 4 (𝜑 → ∀𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐹𝑐) <Q ((𝐹𝑑) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∧ (𝐹𝑑) <Q ((𝐹𝑐) +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))))
571, 56, 7, 23caucvgprlemdisj 7489 . . 3 (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
581, 2, 7, 23caucvgprlemloc 7490 . . 3 (𝜑 → ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
5936, 57, 583jca 1161 . 2 (𝜑 → ((∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))) ∧ ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) ∧ ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿)))))
60 elnp1st2nd 7291 . 2 (𝐿P ↔ ((𝐿 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿))) ∧ ((∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))) ∧ ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) ∧ ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))))
6135, 59, 60sylanbrc 413 1 (𝜑𝐿P)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  w3a 962   = wceq 1331  wcel 1480  wral 2416  wrex 2417  {crab 2420  wss 3071  𝒫 cpw 3510  cop 3530   class class class wbr 3929   × cxp 4537  wf 5119  cfv 5123  (class class class)co 5774  1st c1st 6036  2nd c2nd 6037  1oc1o 6306  [cec 6427  Ncnpi 7087   <N clti 7090   ~Q ceq 7094  Qcnq 7095   +Q cplq 7097  *Qcrq 7099   <Q cltq 7100  Pcnp 7106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7119  df-pli 7120  df-mi 7121  df-lti 7122  df-plpq 7159  df-mpq 7160  df-enq 7162  df-nqqs 7163  df-plqqs 7164  df-mqqs 7165  df-1nqqs 7166  df-rq 7167  df-ltnqqs 7168  df-inp 7281
This theorem is referenced by:  caucvgprlemladdfu  7492  caucvgprlemladdrl  7493  caucvgprlem1  7494  caucvgprlem2  7495  caucvgpr  7497
  Copyright terms: Public domain W3C validator