| Step | Hyp | Ref
 | Expression | 
| 1 |   | caucvgpr.f | 
. . . 4
⊢ (𝜑 → 𝐹:N⟶Q) | 
| 2 |   | caucvgpr.cau | 
. . . 4
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))))) | 
| 3 |   | caucvgpr.bnd | 
. . . . 5
⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) | 
| 4 |   | fveq2 5558 | 
. . . . . . 7
⊢ (𝑗 = 𝑎 → (𝐹‘𝑗) = (𝐹‘𝑎)) | 
| 5 | 4 | breq2d 4045 | 
. . . . . 6
⊢ (𝑗 = 𝑎 → (𝐴 <Q (𝐹‘𝑗) ↔ 𝐴 <Q (𝐹‘𝑎))) | 
| 6 | 5 | cbvralv 2729 | 
. . . . 5
⊢
(∀𝑗 ∈
N 𝐴
<Q (𝐹‘𝑗) ↔ ∀𝑎 ∈ N 𝐴 <Q (𝐹‘𝑎)) | 
| 7 | 3, 6 | sylib 122 | 
. . . 4
⊢ (𝜑 → ∀𝑎 ∈ N 𝐴 <Q (𝐹‘𝑎)) | 
| 8 |   | caucvgpr.lim | 
. . . . 5
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 | 
| 9 |   | opeq1 3808 | 
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑎 → 〈𝑗, 1o〉 = 〈𝑎,
1o〉) | 
| 10 | 9 | eceq1d 6628 | 
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑎 → [〈𝑗, 1o〉]
~Q = [〈𝑎, 1o〉]
~Q ) | 
| 11 | 10 | fveq2d 5562 | 
. . . . . . . . . . 11
⊢ (𝑗 = 𝑎 →
(*Q‘[〈𝑗, 1o〉]
~Q ) = (*Q‘[〈𝑎, 1o〉]
~Q )) | 
| 12 | 11 | oveq2d 5938 | 
. . . . . . . . . 10
⊢ (𝑗 = 𝑎 → (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = (𝑙 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) | 
| 13 | 12, 4 | breq12d 4046 | 
. . . . . . . . 9
⊢ (𝑗 = 𝑎 → ((𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ (𝑙 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q (𝐹‘𝑎))) | 
| 14 | 13 | cbvrexv 2730 | 
. . . . . . . 8
⊢
(∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑎 ∈ N (𝑙 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q (𝐹‘𝑎)) | 
| 15 | 14 | a1i 9 | 
. . . . . . 7
⊢ (𝑙 ∈ Q →
(∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑎 ∈ N (𝑙 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q (𝐹‘𝑎))) | 
| 16 | 15 | rabbiia 2748 | 
. . . . . 6
⊢ {𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} = {𝑙 ∈ Q ∣ ∃𝑎 ∈ N (𝑙 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q (𝐹‘𝑎)} | 
| 17 | 4, 11 | oveq12d 5940 | 
. . . . . . . . . 10
⊢ (𝑗 = 𝑎 → ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) | 
| 18 | 17 | breq1d 4043 | 
. . . . . . . . 9
⊢ (𝑗 = 𝑎 → (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢)) | 
| 19 | 18 | cbvrexv 2730 | 
. . . . . . . 8
⊢
(∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ∃𝑎 ∈ N ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢) | 
| 20 | 19 | a1i 9 | 
. . . . . . 7
⊢ (𝑢 ∈ Q →
(∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ∃𝑎 ∈ N ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢)) | 
| 21 | 20 | rabbiia 2748 | 
. . . . . 6
⊢ {𝑢 ∈ Q ∣
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} = {𝑢 ∈ Q ∣ ∃𝑎 ∈ N ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢} | 
| 22 | 16, 21 | opeq12i 3813 | 
. . . . 5
⊢
〈{𝑙 ∈
Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 = 〈{𝑙 ∈ Q ∣
∃𝑎 ∈
N (𝑙
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q (𝐹‘𝑎)}, {𝑢 ∈ Q ∣ ∃𝑎 ∈ N ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉 | 
| 23 | 8, 22 | eqtri 2217 | 
. . . 4
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑎 ∈ N (𝑙 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q (𝐹‘𝑎)}, {𝑢 ∈ Q ∣ ∃𝑎 ∈ N ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉 | 
| 24 | 1, 2, 7, 23 | caucvgprlemm 7735 | 
. . 3
⊢ (𝜑 → (∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝐿) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd
‘𝐿))) | 
| 25 |   | ssrab2 3268 | 
. . . . . 6
⊢ {𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ⊆ Q | 
| 26 |   | nqex 7430 | 
. . . . . . 7
⊢
Q ∈ V | 
| 27 | 26 | elpw2 4190 | 
. . . . . 6
⊢ ({𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ∈ 𝒫 Q ↔
{𝑙 ∈ Q
∣ ∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ⊆ Q) | 
| 28 | 25, 27 | mpbir 146 | 
. . . . 5
⊢ {𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ∈ 𝒫
Q | 
| 29 |   | ssrab2 3268 | 
. . . . . 6
⊢ {𝑢 ∈ Q ∣
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ⊆
Q | 
| 30 | 26 | elpw2 4190 | 
. . . . . 6
⊢ ({𝑢 ∈ Q ∣
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ∈ 𝒫
Q ↔ {𝑢
∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ⊆
Q) | 
| 31 | 29, 30 | mpbir 146 | 
. . . . 5
⊢ {𝑢 ∈ Q ∣
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ∈ 𝒫
Q | 
| 32 |   | opelxpi 4695 | 
. . . . 5
⊢ (({𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ∈ 𝒫 Q ∧
{𝑢 ∈ Q
∣ ∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ∈ 𝒫
Q) → 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 ∈ (𝒫
Q × 𝒫 Q)) | 
| 33 | 28, 31, 32 | mp2an 426 | 
. . . 4
⊢
〈{𝑙 ∈
Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 ∈ (𝒫
Q × 𝒫 Q) | 
| 34 | 8, 33 | eqeltri 2269 | 
. . 3
⊢ 𝐿 ∈ (𝒫
Q × 𝒫 Q) | 
| 35 | 24, 34 | jctil 312 | 
. 2
⊢ (𝜑 → (𝐿 ∈ (𝒫 Q ×
𝒫 Q) ∧ (∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝐿) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd
‘𝐿)))) | 
| 36 | 1, 2, 7, 23 | caucvgprlemrnd 7740 | 
. . 3
⊢ (𝜑 → (∀𝑠 ∈ Q (𝑠 ∈ (1st
‘𝐿) ↔
∃𝑟 ∈
Q (𝑠
<Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd
‘𝐿) ↔
∃𝑠 ∈
Q (𝑠
<Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿))))) | 
| 37 |   | breq1 4036 | 
. . . . . . 7
⊢ (𝑛 = 𝑐 → (𝑛 <N 𝑘 ↔ 𝑐 <N 𝑘)) | 
| 38 |   | fveq2 5558 | 
. . . . . . . . 9
⊢ (𝑛 = 𝑐 → (𝐹‘𝑛) = (𝐹‘𝑐)) | 
| 39 |   | opeq1 3808 | 
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑐 → 〈𝑛, 1o〉 = 〈𝑐,
1o〉) | 
| 40 | 39 | eceq1d 6628 | 
. . . . . . . . . . 11
⊢ (𝑛 = 𝑐 → [〈𝑛, 1o〉]
~Q = [〈𝑐, 1o〉]
~Q ) | 
| 41 | 40 | fveq2d 5562 | 
. . . . . . . . . 10
⊢ (𝑛 = 𝑐 →
(*Q‘[〈𝑛, 1o〉]
~Q ) = (*Q‘[〈𝑐, 1o〉]
~Q )) | 
| 42 | 41 | oveq2d 5938 | 
. . . . . . . . 9
⊢ (𝑛 = 𝑐 → ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) = ((𝐹‘𝑘) +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))) | 
| 43 | 38, 42 | breq12d 4046 | 
. . . . . . . 8
⊢ (𝑛 = 𝑐 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ↔ (𝐹‘𝑐) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )))) | 
| 44 | 38, 41 | oveq12d 5940 | 
. . . . . . . . 9
⊢ (𝑛 = 𝑐 → ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) = ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))) | 
| 45 | 44 | breq2d 4045 | 
. . . . . . . 8
⊢ (𝑛 = 𝑐 → ((𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ↔ (𝐹‘𝑘) <Q ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )))) | 
| 46 | 43, 45 | anbi12d 473 | 
. . . . . . 7
⊢ (𝑛 = 𝑐 → (((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))) ↔ ((𝐹‘𝑐) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))))) | 
| 47 | 37, 46 | imbi12d 234 | 
. . . . . 6
⊢ (𝑛 = 𝑐 → ((𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )))) ↔ (𝑐 <N 𝑘 → ((𝐹‘𝑐) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )))))) | 
| 48 |   | breq2 4037 | 
. . . . . . 7
⊢ (𝑘 = 𝑑 → (𝑐 <N 𝑘 ↔ 𝑐 <N 𝑑)) | 
| 49 |   | fveq2 5558 | 
. . . . . . . . . 10
⊢ (𝑘 = 𝑑 → (𝐹‘𝑘) = (𝐹‘𝑑)) | 
| 50 | 49 | oveq1d 5937 | 
. . . . . . . . 9
⊢ (𝑘 = 𝑑 → ((𝐹‘𝑘) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) = ((𝐹‘𝑑) +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))) | 
| 51 | 50 | breq2d 4045 | 
. . . . . . . 8
⊢ (𝑘 = 𝑑 → ((𝐹‘𝑐) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ↔ (𝐹‘𝑐) <Q ((𝐹‘𝑑) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )))) | 
| 52 | 49 | breq1d 4043 | 
. . . . . . . 8
⊢ (𝑘 = 𝑑 → ((𝐹‘𝑘) <Q ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ↔ (𝐹‘𝑑) <Q ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )))) | 
| 53 | 51, 52 | anbi12d 473 | 
. . . . . . 7
⊢ (𝑘 = 𝑑 → (((𝐹‘𝑐) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))) ↔ ((𝐹‘𝑐) <Q ((𝐹‘𝑑) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ∧ (𝐹‘𝑑) <Q ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))))) | 
| 54 | 48, 53 | imbi12d 234 | 
. . . . . 6
⊢ (𝑘 = 𝑑 → ((𝑐 <N 𝑘 → ((𝐹‘𝑐) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )))) ↔ (𝑐 <N 𝑑 → ((𝐹‘𝑐) <Q ((𝐹‘𝑑) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ∧ (𝐹‘𝑑) <Q ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )))))) | 
| 55 | 47, 54 | cbvral2v 2742 | 
. . . . 5
⊢
(∀𝑛 ∈
N ∀𝑘
∈ N (𝑛
<N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )))) ↔ ∀𝑐 ∈ N ∀𝑑 ∈ N (𝑐 <N
𝑑 → ((𝐹‘𝑐) <Q ((𝐹‘𝑑) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ∧ (𝐹‘𝑑) <Q ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))))) | 
| 56 | 2, 55 | sylib 122 | 
. . . 4
⊢ (𝜑 → ∀𝑐 ∈ N ∀𝑑 ∈ N (𝑐 <N
𝑑 → ((𝐹‘𝑐) <Q ((𝐹‘𝑑) +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ∧ (𝐹‘𝑑) <Q ((𝐹‘𝑐) +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))))) | 
| 57 | 1, 56, 7, 23 | caucvgprlemdisj 7741 | 
. . 3
⊢ (𝜑 → ∀𝑠 ∈ Q ¬ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑠 ∈ (2nd
‘𝐿))) | 
| 58 | 1, 2, 7, 23 | caucvgprlemloc 7742 | 
. . 3
⊢ (𝜑 → ∀𝑠 ∈ Q ∀𝑟 ∈ Q (𝑠 <Q
𝑟 → (𝑠 ∈ (1st
‘𝐿) ∨ 𝑟 ∈ (2nd
‘𝐿)))) | 
| 59 | 36, 57, 58 | 3jca 1179 | 
. 2
⊢ (𝜑 → ((∀𝑠 ∈ Q (𝑠 ∈ (1st
‘𝐿) ↔
∃𝑟 ∈
Q (𝑠
<Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd
‘𝐿) ↔
∃𝑠 ∈
Q (𝑠
<Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)))) ∧ ∀𝑠 ∈ Q ¬
(𝑠 ∈ (1st
‘𝐿) ∧ 𝑠 ∈ (2nd
‘𝐿)) ∧
∀𝑠 ∈
Q ∀𝑟
∈ Q (𝑠
<Q 𝑟 → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑟 ∈ (2nd ‘𝐿))))) | 
| 60 |   | elnp1st2nd 7543 | 
. 2
⊢ (𝐿 ∈ P ↔
((𝐿 ∈ (𝒫
Q × 𝒫 Q) ∧ (∃𝑠 ∈ Q 𝑠 ∈ (1st
‘𝐿) ∧
∃𝑟 ∈
Q 𝑟 ∈
(2nd ‘𝐿)))
∧ ((∀𝑠 ∈
Q (𝑠 ∈
(1st ‘𝐿)
↔ ∃𝑟 ∈
Q (𝑠
<Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd
‘𝐿) ↔
∃𝑠 ∈
Q (𝑠
<Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)))) ∧ ∀𝑠 ∈ Q ¬
(𝑠 ∈ (1st
‘𝐿) ∧ 𝑠 ∈ (2nd
‘𝐿)) ∧
∀𝑠 ∈
Q ∀𝑟
∈ Q (𝑠
<Q 𝑟 → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑟 ∈ (2nd ‘𝐿)))))) | 
| 61 | 35, 59, 60 | sylanbrc 417 | 
1
⊢ (𝜑 → 𝐿 ∈ P) |