ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq2d GIF version

Theorem reseq2d 4891
Description: Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
reseqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
reseq2d (𝜑 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem reseq2d
StepHypRef Expression
1 reseqd.1 . 2 (𝜑𝐴 = 𝐵)
2 reseq2 4886 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  cres 4613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-opab 4051  df-xp 4617  df-res 4623
This theorem is referenced by:  reseq12d  4892  resima2  4925  relresfld  5140  f1orescnv  5458  funcocnv2  5467  fococnv2  5468  fnressn  5682  oprssov  5994  dftpos2  6240  fnsnsplitdc  6484  dif1en  6857  sbthlemi4  6937  fseq1p1m1  10050  resunimafz0  10766  setsvala  12447  metreslem  13174  xmspropd  13271  mspropd  13272  bj-charfundcALT  13844
  Copyright terms: Public domain W3C validator