| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq2d | GIF version | ||
| Description: Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| reseqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| reseq2d | ⊢ (𝜑 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | reseq2 4996 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ↾ cres 4718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-opab 4145 df-xp 4722 df-res 4728 |
| This theorem is referenced by: reseq12d 5002 resima2 5035 relresfld 5254 f1orescnv 5584 funcocnv2 5593 fococnv2 5594 fnressn 5818 oprssov 6138 dftpos2 6397 fnsnsplitdc 6641 dif1en 7029 sbthlemi4 7115 fseq1p1m1 10278 resunimafz0 11040 setsvala 13049 metreslem 15039 xmspropd 15136 mspropd 15137 bj-charfundcALT 16102 |
| Copyright terms: Public domain | W3C validator |