ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq2d GIF version

Theorem reseq2d 5001
Description: Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
reseqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
reseq2d (𝜑 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem reseq2d
StepHypRef Expression
1 reseqd.1 . 2 (𝜑𝐴 = 𝐵)
2 reseq2 4996 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  cres 4718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-opab 4145  df-xp 4722  df-res 4728
This theorem is referenced by:  reseq12d  5002  resima2  5035  relresfld  5254  f1orescnv  5584  funcocnv2  5593  fococnv2  5594  fnressn  5818  oprssov  6138  dftpos2  6397  fnsnsplitdc  6641  dif1en  7029  sbthlemi4  7115  fseq1p1m1  10278  resunimafz0  11040  setsvala  13049  metreslem  15039  xmspropd  15136  mspropd  15137  bj-charfundcALT  16102
  Copyright terms: Public domain W3C validator