ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq2d GIF version

Theorem reseq2d 4946
Description: Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
reseqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
reseq2d (𝜑 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem reseq2d
StepHypRef Expression
1 reseqd.1 . 2 (𝜑𝐴 = 𝐵)
2 reseq2 4941 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cres 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-opab 4095  df-xp 4669  df-res 4675
This theorem is referenced by:  reseq12d  4947  resima2  4980  relresfld  5199  f1orescnv  5520  funcocnv2  5529  fococnv2  5530  fnressn  5748  oprssov  6065  dftpos2  6319  fnsnsplitdc  6563  dif1en  6940  sbthlemi4  7026  fseq1p1m1  10169  resunimafz0  10923  setsvala  12709  metreslem  14616  xmspropd  14713  mspropd  14714  bj-charfundcALT  15455
  Copyright terms: Public domain W3C validator