ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq2d GIF version

Theorem reseq2d 4909
Description: Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
reseqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
reseq2d (𝜑 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem reseq2d
StepHypRef Expression
1 reseqd.1 . 2 (𝜑𝐴 = 𝐵)
2 reseq2 4904 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  cres 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137  df-opab 4067  df-xp 4634  df-res 4640
This theorem is referenced by:  reseq12d  4910  resima2  4943  relresfld  5160  f1orescnv  5479  funcocnv2  5488  fococnv2  5489  fnressn  5705  oprssov  6019  dftpos2  6265  fnsnsplitdc  6509  dif1en  6882  sbthlemi4  6962  fseq1p1m1  10097  resunimafz0  10814  setsvala  12496  metreslem  14020  xmspropd  14117  mspropd  14118  bj-charfundcALT  14701
  Copyright terms: Public domain W3C validator