ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq2d GIF version

Theorem reseq2d 5005
Description: Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
reseqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
reseq2d (𝜑 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem reseq2d
StepHypRef Expression
1 reseqd.1 . 2 (𝜑𝐴 = 𝐵)
2 reseq2 5000 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  cres 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-opab 4146  df-xp 4725  df-res 4731
This theorem is referenced by:  reseq12d  5006  resima2  5039  relresfld  5258  f1orescnv  5590  funcocnv2  5599  fococnv2  5600  fnressn  5829  oprssov  6153  dftpos2  6413  fnsnsplitdc  6659  dif1en  7049  sbthlemi4  7135  fseq1p1m1  10298  resunimafz0  11061  setsvala  13071  metreslem  15062  xmspropd  15159  mspropd  15160  bj-charfundcALT  16196
  Copyright terms: Public domain W3C validator