| Step | Hyp | Ref
 | Expression | 
| 1 |   | cnegex 8204 | 
. . 3
⊢ (𝐴 ∈ ℂ →
∃𝑦 ∈ ℂ
(𝐴 + 𝑦) = 0) | 
| 2 | 1 | adantr 276 | 
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
∃𝑦 ∈ ℂ
(𝐴 + 𝑦) = 0) | 
| 3 |   | simpl 109 | 
. . . 4
⊢ ((𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0) → 𝑦 ∈ ℂ) | 
| 4 |   | simpr 110 | 
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈
ℂ) | 
| 5 |   | addcl 8004 | 
. . . 4
⊢ ((𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑦 + 𝐵) ∈ ℂ) | 
| 6 | 3, 4, 5 | syl2anr 290 | 
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) → (𝑦 + 𝐵) ∈ ℂ) | 
| 7 |   | simplrr 536 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → (𝐴 + 𝑦) = 0) | 
| 8 | 7 | oveq1d 5937 | 
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑦) + 𝐵) = (0 + 𝐵)) | 
| 9 |   | simplll 533 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ) | 
| 10 |   | simplrl 535 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → 𝑦 ∈ ℂ) | 
| 11 |   | simpllr 534 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ) | 
| 12 | 9, 10, 11 | addassd 8049 | 
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑦) + 𝐵) = (𝐴 + (𝑦 + 𝐵))) | 
| 13 | 11 | addlidd 8176 | 
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → (0 + 𝐵) = 𝐵) | 
| 14 | 8, 12, 13 | 3eqtr3rd 2238 | 
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → 𝐵 = (𝐴 + (𝑦 + 𝐵))) | 
| 15 | 14 | eqeq2d 2208 | 
. . . . 5
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = 𝐵 ↔ (𝐴 + 𝑥) = (𝐴 + (𝑦 + 𝐵)))) | 
| 16 |   | simpr 110 | 
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | 
| 17 | 10, 11 | addcld 8046 | 
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → (𝑦 + 𝐵) ∈ ℂ) | 
| 18 | 9, 16, 17 | addcand 8210 | 
. . . . 5
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = (𝐴 + (𝑦 + 𝐵)) ↔ 𝑥 = (𝑦 + 𝐵))) | 
| 19 | 15, 18 | bitrd 188 | 
. . . 4
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = 𝐵 ↔ 𝑥 = (𝑦 + 𝐵))) | 
| 20 | 19 | ralrimiva 2570 | 
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) → ∀𝑥 ∈ ℂ ((𝐴 + 𝑥) = 𝐵 ↔ 𝑥 = (𝑦 + 𝐵))) | 
| 21 |   | reu6i 2955 | 
. . 3
⊢ (((𝑦 + 𝐵) ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((𝐴 + 𝑥) = 𝐵 ↔ 𝑥 = (𝑦 + 𝐵))) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵) | 
| 22 | 6, 20, 21 | syl2anc 411 | 
. 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵) | 
| 23 | 2, 22 | rexlimddv 2619 | 
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
∃!𝑥 ∈ ℂ
(𝐴 + 𝑥) = 𝐵) |