ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negeu GIF version

Theorem negeu 8080
Description: Existential uniqueness of negatives. Theorem I.2 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
negeu ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem negeu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnegex 8067 . . 3 (𝐴 ∈ ℂ → ∃𝑦 ∈ ℂ (𝐴 + 𝑦) = 0)
21adantr 274 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃𝑦 ∈ ℂ (𝐴 + 𝑦) = 0)
3 simpl 108 . . . 4 ((𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0) → 𝑦 ∈ ℂ)
4 simpr 109 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
5 addcl 7869 . . . 4 ((𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑦 + 𝐵) ∈ ℂ)
63, 4, 5syl2anr 288 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) → (𝑦 + 𝐵) ∈ ℂ)
7 simplrr 526 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → (𝐴 + 𝑦) = 0)
87oveq1d 5851 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑦) + 𝐵) = (0 + 𝐵))
9 simplll 523 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
10 simplrl 525 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → 𝑦 ∈ ℂ)
11 simpllr 524 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
129, 10, 11addassd 7912 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑦) + 𝐵) = (𝐴 + (𝑦 + 𝐵)))
1311addid2d 8039 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → (0 + 𝐵) = 𝐵)
148, 12, 133eqtr3rd 2206 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → 𝐵 = (𝐴 + (𝑦 + 𝐵)))
1514eqeq2d 2176 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = 𝐵 ↔ (𝐴 + 𝑥) = (𝐴 + (𝑦 + 𝐵))))
16 simpr 109 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
1710, 11addcld 7909 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → (𝑦 + 𝐵) ∈ ℂ)
189, 16, 17addcand 8073 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = (𝐴 + (𝑦 + 𝐵)) ↔ 𝑥 = (𝑦 + 𝐵)))
1915, 18bitrd 187 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = 𝐵𝑥 = (𝑦 + 𝐵)))
2019ralrimiva 2537 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) → ∀𝑥 ∈ ℂ ((𝐴 + 𝑥) = 𝐵𝑥 = (𝑦 + 𝐵)))
21 reu6i 2912 . . 3 (((𝑦 + 𝐵) ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((𝐴 + 𝑥) = 𝐵𝑥 = (𝑦 + 𝐵))) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵)
226, 20, 21syl2anc 409 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵)
232, 22rexlimddv 2586 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1342  wcel 2135  wral 2442  wrex 2443  ∃!wreu 2444  (class class class)co 5836  cc 7742  0cc0 7744   + caddc 7747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146  ax-resscn 7836  ax-1cn 7837  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-reu 2449  df-v 2723  df-un 3115  df-in 3117  df-ss 3124  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-iota 5147  df-fv 5190  df-ov 5839
This theorem is referenced by:  subval  8081  subcl  8088  subadd  8092
  Copyright terms: Public domain W3C validator