ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuccatpfxs1 GIF version

Theorem reuccatpfxs1 11274
Description: There is a unique word having the length of a given word increased by 1 with the given word as prefix if there is a unique symbol which extends the given word. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 21-Jan-2022.) (Revised by AV, 13-Oct-2022.)
Hypothesis
Ref Expression
reuccatpfxs1.1 𝑣𝑋
Assertion
Ref Expression
reuccatpfxs1 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))))
Distinct variable groups:   𝑣,𝑉,𝑥   𝑣,𝑊,𝑥   𝑥,𝑋
Allowed substitution hint:   𝑋(𝑣)

Proof of Theorem reuccatpfxs1
Dummy variables 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2290 . . . 4 (𝑥 = 𝑦 → (𝑥 ∈ Word 𝑉𝑦 ∈ Word 𝑉))
2 fveqeq2 5635 . . . 4 (𝑥 = 𝑦 → ((♯‘𝑥) = ((♯‘𝑊) + 1) ↔ (♯‘𝑦) = ((♯‘𝑊) + 1)))
31, 2anbi12d 473 . . 3 (𝑥 = 𝑦 → ((𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) ↔ (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))))
43cbvralvw 2769 . 2 (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) ↔ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1)))
5 reuccatpfxs1.1 . . . . 5 𝑣𝑋
65nfel2 2385 . . . 4 𝑣(𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋
75nfel2 2385 . . . 4 𝑣(𝑊 ++ ⟨“𝑥”⟩) ∈ 𝑋
8 s1eq 11147 . . . . . 6 (𝑣 = 𝑥 → ⟨“𝑣”⟩ = ⟨“𝑥”⟩)
98oveq2d 6016 . . . . 5 (𝑣 = 𝑥 → (𝑊 ++ ⟨“𝑣”⟩) = (𝑊 ++ ⟨“𝑥”⟩))
109eleq1d 2298 . . . 4 (𝑣 = 𝑥 → ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ↔ (𝑊 ++ ⟨“𝑥”⟩) ∈ 𝑋))
11 s1eq 11147 . . . . . 6 (𝑥 = 𝑢 → ⟨“𝑥”⟩ = ⟨“𝑢”⟩)
1211oveq2d 6016 . . . . 5 (𝑥 = 𝑢 → (𝑊 ++ ⟨“𝑥”⟩) = (𝑊 ++ ⟨“𝑢”⟩))
1312eleq1d 2298 . . . 4 (𝑥 = 𝑢 → ((𝑊 ++ ⟨“𝑥”⟩) ∈ 𝑋 ↔ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋))
146, 7, 10, 13reu8nf 3110 . . 3 (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ↔ ∃𝑣𝑉 ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢)))
15 nfv 1574 . . . . 5 𝑣 𝑊 ∈ Word 𝑉
16 nfv 1574 . . . . . 6 𝑣(𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))
175, 16nfralw 2567 . . . . 5 𝑣𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))
1815, 17nfan 1611 . . . 4 𝑣(𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1)))
19 nfv 1574 . . . . 5 𝑣 𝑊 = (𝑥 prefix (♯‘𝑊))
205, 19nfreuw 2706 . . . 4 𝑣∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))
21 simprl 529 . . . . . 6 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋)
22 simpl 109 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → 𝑊 ∈ Word 𝑉)
2322ad2antrr 488 . . . . . . . . . 10 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → 𝑊 ∈ Word 𝑉)
2423anim1i 340 . . . . . . . . 9 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑊 ∈ Word 𝑉𝑥𝑋))
25 simplrr 536 . . . . . . . . 9 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))
26 simp-4r 542 . . . . . . . . 9 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1)))
27 reuccatpfxs1lem 11273 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑥𝑋) ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢) ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑥 prefix (♯‘𝑊)) → 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)))
2824, 25, 26, 27syl3anc 1271 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑊 = (𝑥 prefix (♯‘𝑊)) → 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)))
29 oveq1 6007 . . . . . . . . . . 11 (𝑥 = (𝑊 ++ ⟨“𝑣”⟩) → (𝑥 prefix (♯‘𝑊)) = ((𝑊 ++ ⟨“𝑣”⟩) prefix (♯‘𝑊)))
30 s1cl 11149 . . . . . . . . . . . . . 14 (𝑣𝑉 → ⟨“𝑣”⟩ ∈ Word 𝑉)
3122, 30anim12i 338 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑣”⟩ ∈ Word 𝑉))
3231ad2antrr 488 . . . . . . . . . . . 12 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑣”⟩ ∈ Word 𝑉))
33 pfxccat1 11229 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑣”⟩ ∈ Word 𝑉) → ((𝑊 ++ ⟨“𝑣”⟩) prefix (♯‘𝑊)) = 𝑊)
3432, 33syl 14 . . . . . . . . . . 11 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → ((𝑊 ++ ⟨“𝑣”⟩) prefix (♯‘𝑊)) = 𝑊)
3529, 34sylan9eqr 2284 . . . . . . . . . 10 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) ∧ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)) → (𝑥 prefix (♯‘𝑊)) = 𝑊)
3635eqcomd 2235 . . . . . . . . 9 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) ∧ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)) → 𝑊 = (𝑥 prefix (♯‘𝑊)))
3736ex 115 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑥 = (𝑊 ++ ⟨“𝑣”⟩) → 𝑊 = (𝑥 prefix (♯‘𝑊))))
3828, 37impbid 129 . . . . . . 7 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑊 = (𝑥 prefix (♯‘𝑊)) ↔ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)))
3938ralrimiva 2603 . . . . . 6 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → ∀𝑥𝑋 (𝑊 = (𝑥 prefix (♯‘𝑊)) ↔ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)))
40 reu6i 2994 . . . . . 6 (((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑥𝑋 (𝑊 = (𝑥 prefix (♯‘𝑊)) ↔ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩))) → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊)))
4121, 39, 40syl2anc 411 . . . . 5 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊)))
4241exp31 364 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → (𝑣𝑉 → (((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢)) → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊)))))
4318, 20, 42rexlimd 2645 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → (∃𝑣𝑉 ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢)) → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))))
4414, 43biimtrid 152 . 2 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))))
454, 44sylan2b 287 1 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wnfc 2359  wral 2508  wrex 2509  ∃!wreu 2510  cfv 5317  (class class class)co 6000  1c1 7996   + caddc 7998  chash 10992  Word cword 11066   ++ cconcat 11120  ⟨“cs1 11143   prefix cpfx 11199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-ihash 10993  df-word 11067  df-lsw 11112  df-concat 11121  df-s1 11144  df-substr 11173  df-pfx 11200
This theorem is referenced by:  reuccatpfxs1v  11275
  Copyright terms: Public domain W3C validator