ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnpredcl GIF version

Theorem nnpredcl 4600
Description: The predecessor of a natural number is a natural number. This theorem is most interesting when the natural number is a successor (as seen in theorems like onsucuni2 4541) but also holds when it is by uni0 3816. (Contributed by Jim Kingdon, 31-Jul-2022.)
Assertion
Ref Expression
nnpredcl (𝐴 ∈ ω → 𝐴 ∈ ω)

Proof of Theorem nnpredcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unieq 3798 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
2 uni0 3816 . . . . 5 ∅ = ∅
3 peano1 4571 . . . . 5 ∅ ∈ ω
42, 3eqeltri 2239 . . . 4 ∅ ∈ ω
51, 4eqeltrdi 2257 . . 3 (𝐴 = ∅ → 𝐴 ∈ ω)
65adantl 275 . 2 ((𝐴 ∈ ω ∧ 𝐴 = ∅) → 𝐴 ∈ ω)
7 nnon 4587 . . . . . 6 (𝐴 ∈ ω → 𝐴 ∈ On)
87adantr 274 . . . . 5 ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ On)
9 simpr 109 . . . . 5 ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
10 onsucuni2 4541 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐴 = suc 𝑥) → suc 𝐴 = 𝐴)
1110ex 114 . . . . . 6 (𝐴 ∈ On → (𝐴 = suc 𝑥 → suc 𝐴 = 𝐴))
1211rexlimdvw 2587 . . . . 5 (𝐴 ∈ On → (∃𝑥 ∈ ω 𝐴 = suc 𝑥 → suc 𝐴 = 𝐴))
138, 9, 12sylc 62 . . . 4 ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → suc 𝐴 = 𝐴)
14 simpl 108 . . . 4 ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ ω)
1513, 14eqeltrd 2243 . . 3 ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → suc 𝐴 ∈ ω)
16 peano2b 4592 . . 3 ( 𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
1715, 16sylibr 133 . 2 ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ ω)
18 nn0suc 4581 . 2 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
196, 17, 18mpjaodan 788 1 (𝐴 ∈ ω → 𝐴 ∈ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wrex 2445  c0 3409   cuni 3789  Oncon0 4341  suc csuc 4343  ωcom 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-tr 4081  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568
This theorem is referenced by:  nnpredlt  4601  omp1eomlem  7059  ctmlemr  7073  nnnninfeq2  7093  nninfisollemne  7095  nninfisol  7097  nnsf  13885  peano4nninf  13886
  Copyright terms: Public domain W3C validator