Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnpredcl | GIF version |
Description: The predecessor of a natural number is a natural number. This theorem is most interesting when the natural number is a successor (as seen in theorems like onsucuni2 4541) but also holds when it is ∅ by uni0 3816. (Contributed by Jim Kingdon, 31-Jul-2022.) |
Ref | Expression |
---|---|
nnpredcl | ⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 3798 | . . . 4 ⊢ (𝐴 = ∅ → ∪ 𝐴 = ∪ ∅) | |
2 | uni0 3816 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
3 | peano1 4571 | . . . . 5 ⊢ ∅ ∈ ω | |
4 | 2, 3 | eqeltri 2239 | . . . 4 ⊢ ∪ ∅ ∈ ω |
5 | 1, 4 | eqeltrdi 2257 | . . 3 ⊢ (𝐴 = ∅ → ∪ 𝐴 ∈ ω) |
6 | 5 | adantl 275 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐴 = ∅) → ∪ 𝐴 ∈ ω) |
7 | nnon 4587 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
8 | 7 | adantr 274 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ On) |
9 | simpr 109 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥) | |
10 | onsucuni2 4541 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝑥) → suc ∪ 𝐴 = 𝐴) | |
11 | 10 | ex 114 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝐴 = suc 𝑥 → suc ∪ 𝐴 = 𝐴)) |
12 | 11 | rexlimdvw 2587 | . . . . 5 ⊢ (𝐴 ∈ On → (∃𝑥 ∈ ω 𝐴 = suc 𝑥 → suc ∪ 𝐴 = 𝐴)) |
13 | 8, 9, 12 | sylc 62 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → suc ∪ 𝐴 = 𝐴) |
14 | simpl 108 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ ω) | |
15 | 13, 14 | eqeltrd 2243 | . . 3 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → suc ∪ 𝐴 ∈ ω) |
16 | peano2b 4592 | . . 3 ⊢ (∪ 𝐴 ∈ ω ↔ suc ∪ 𝐴 ∈ ω) | |
17 | 15, 16 | sylibr 133 | . 2 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → ∪ 𝐴 ∈ ω) |
18 | nn0suc 4581 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) | |
19 | 6, 17, 18 | mpjaodan 788 | 1 ⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 ∅c0 3409 ∪ cuni 3789 Oncon0 4341 suc csuc 4343 ωcom 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 |
This theorem is referenced by: nnpredlt 4601 omp1eomlem 7059 ctmlemr 7073 nnnninfeq2 7093 nninfisollemne 7095 nninfisol 7097 nnsf 13885 peano4nninf 13886 |
Copyright terms: Public domain | W3C validator |