![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > nnpredcl | GIF version |
Description: The predecessor of a natural number is a natural number. This theorem is most interesting when the natural number is a successor (as seen in theorems like onsucuni2 4380) but also holds when it is ∅ by uni0 3680. (Contributed by Jim Kingdon, 31-Jul-2022.) |
Ref | Expression |
---|---|
nnpredcl | ⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 3662 | . . . 4 ⊢ (𝐴 = ∅ → ∪ 𝐴 = ∪ ∅) | |
2 | uni0 3680 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
3 | peano1 4409 | . . . . 5 ⊢ ∅ ∈ ω | |
4 | 2, 3 | eqeltri 2160 | . . . 4 ⊢ ∪ ∅ ∈ ω |
5 | 1, 4 | syl6eqel 2178 | . . 3 ⊢ (𝐴 = ∅ → ∪ 𝐴 ∈ ω) |
6 | 5 | adantl 271 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐴 = ∅) → ∪ 𝐴 ∈ ω) |
7 | nnon 4424 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
8 | 7 | adantr 270 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ On) |
9 | simpr 108 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥) | |
10 | onsucuni2 4380 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝑥) → suc ∪ 𝐴 = 𝐴) | |
11 | 10 | ex 113 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝐴 = suc 𝑥 → suc ∪ 𝐴 = 𝐴)) |
12 | 11 | rexlimdvw 2492 | . . . . 5 ⊢ (𝐴 ∈ On → (∃𝑥 ∈ ω 𝐴 = suc 𝑥 → suc ∪ 𝐴 = 𝐴)) |
13 | 8, 9, 12 | sylc 61 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → suc ∪ 𝐴 = 𝐴) |
14 | simpl 107 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ ω) | |
15 | 13, 14 | eqeltrd 2164 | . . 3 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → suc ∪ 𝐴 ∈ ω) |
16 | peano2b 4429 | . . 3 ⊢ (∪ 𝐴 ∈ ω ↔ suc ∪ 𝐴 ∈ ω) | |
17 | 15, 16 | sylibr 132 | . 2 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → ∪ 𝐴 ∈ ω) |
18 | nn0suc 4419 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) | |
19 | 6, 17, 18 | mpjaodan 747 | 1 ⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1289 ∈ wcel 1438 ∃wrex 2360 ∅c0 3286 ∪ cuni 3653 Oncon0 4190 suc csuc 4192 ωcom 4405 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-nul 3965 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-iinf 4403 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-pw 3431 df-sn 3452 df-pr 3453 df-uni 3654 df-int 3689 df-tr 3937 df-iord 4193 df-on 4195 df-suc 4198 df-iom 4406 |
This theorem is referenced by: nnsf 11895 peano4nninf 11896 |
Copyright terms: Public domain | W3C validator |