![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnpredcl | GIF version |
Description: The predecessor of a natural number is a natural number. This theorem is most interesting when the natural number is a successor (as seen in theorems like onsucuni2 4597) but also holds when it is ∅ by uni0 3863. (Contributed by Jim Kingdon, 31-Jul-2022.) |
Ref | Expression |
---|---|
nnpredcl | ⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 3845 | . . . 4 ⊢ (𝐴 = ∅ → ∪ 𝐴 = ∪ ∅) | |
2 | uni0 3863 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
3 | peano1 4627 | . . . . 5 ⊢ ∅ ∈ ω | |
4 | 2, 3 | eqeltri 2266 | . . . 4 ⊢ ∪ ∅ ∈ ω |
5 | 1, 4 | eqeltrdi 2284 | . . 3 ⊢ (𝐴 = ∅ → ∪ 𝐴 ∈ ω) |
6 | 5 | adantl 277 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐴 = ∅) → ∪ 𝐴 ∈ ω) |
7 | nnon 4643 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
8 | 7 | adantr 276 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ On) |
9 | simpr 110 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥) | |
10 | onsucuni2 4597 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝑥) → suc ∪ 𝐴 = 𝐴) | |
11 | 10 | ex 115 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝐴 = suc 𝑥 → suc ∪ 𝐴 = 𝐴)) |
12 | 11 | rexlimdvw 2615 | . . . . 5 ⊢ (𝐴 ∈ On → (∃𝑥 ∈ ω 𝐴 = suc 𝑥 → suc ∪ 𝐴 = 𝐴)) |
13 | 8, 9, 12 | sylc 62 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → suc ∪ 𝐴 = 𝐴) |
14 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ ω) | |
15 | 13, 14 | eqeltrd 2270 | . . 3 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → suc ∪ 𝐴 ∈ ω) |
16 | peano2b 4648 | . . 3 ⊢ (∪ 𝐴 ∈ ω ↔ suc ∪ 𝐴 ∈ ω) | |
17 | 15, 16 | sylibr 134 | . 2 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → ∪ 𝐴 ∈ ω) |
18 | nn0suc 4637 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) | |
19 | 6, 17, 18 | mpjaodan 799 | 1 ⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 ∅c0 3447 ∪ cuni 3836 Oncon0 4395 suc csuc 4397 ωcom 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-int 3872 df-tr 4129 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 |
This theorem is referenced by: nnpredlt 4657 omp1eomlem 7155 ctmlemr 7169 nnnninfeq2 7190 nninfisollemne 7192 nninfisol 7194 nnsf 15565 peano4nninf 15566 |
Copyright terms: Public domain | W3C validator |