| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nnpredcl | GIF version | ||
| Description: The predecessor of a natural number is a natural number. This theorem is most interesting when the natural number is a successor (as seen in theorems like onsucuni2 4600) but also holds when it is ∅ by uni0 3866. (Contributed by Jim Kingdon, 31-Jul-2022.) | 
| Ref | Expression | 
|---|---|
| nnpredcl | ⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | unieq 3848 | . . . 4 ⊢ (𝐴 = ∅ → ∪ 𝐴 = ∪ ∅) | |
| 2 | uni0 3866 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
| 3 | peano1 4630 | . . . . 5 ⊢ ∅ ∈ ω | |
| 4 | 2, 3 | eqeltri 2269 | . . . 4 ⊢ ∪ ∅ ∈ ω | 
| 5 | 1, 4 | eqeltrdi 2287 | . . 3 ⊢ (𝐴 = ∅ → ∪ 𝐴 ∈ ω) | 
| 6 | 5 | adantl 277 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐴 = ∅) → ∪ 𝐴 ∈ ω) | 
| 7 | nnon 4646 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 8 | 7 | adantr 276 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ On) | 
| 9 | simpr 110 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥) | |
| 10 | onsucuni2 4600 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝑥) → suc ∪ 𝐴 = 𝐴) | |
| 11 | 10 | ex 115 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝐴 = suc 𝑥 → suc ∪ 𝐴 = 𝐴)) | 
| 12 | 11 | rexlimdvw 2618 | . . . . 5 ⊢ (𝐴 ∈ On → (∃𝑥 ∈ ω 𝐴 = suc 𝑥 → suc ∪ 𝐴 = 𝐴)) | 
| 13 | 8, 9, 12 | sylc 62 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → suc ∪ 𝐴 = 𝐴) | 
| 14 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ ω) | |
| 15 | 13, 14 | eqeltrd 2273 | . . 3 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → suc ∪ 𝐴 ∈ ω) | 
| 16 | peano2b 4651 | . . 3 ⊢ (∪ 𝐴 ∈ ω ↔ suc ∪ 𝐴 ∈ ω) | |
| 17 | 15, 16 | sylibr 134 | . 2 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → ∪ 𝐴 ∈ ω) | 
| 18 | nn0suc 4640 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) | |
| 19 | 6, 17, 18 | mpjaodan 799 | 1 ⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 ∅c0 3450 ∪ cuni 3839 Oncon0 4398 suc csuc 4400 ωcom 4626 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 | 
| This theorem is referenced by: nnpredlt 4660 omp1eomlem 7160 ctmlemr 7174 nnnninfeq2 7195 nninfisollemne 7197 nninfisol 7199 nnsf 15649 peano4nninf 15650 | 
| Copyright terms: Public domain | W3C validator |