ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnpredcl GIF version

Theorem nnpredcl 4656
Description: The predecessor of a natural number is a natural number. This theorem is most interesting when the natural number is a successor (as seen in theorems like onsucuni2 4597) but also holds when it is by uni0 3863. (Contributed by Jim Kingdon, 31-Jul-2022.)
Assertion
Ref Expression
nnpredcl (𝐴 ∈ ω → 𝐴 ∈ ω)

Proof of Theorem nnpredcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unieq 3845 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
2 uni0 3863 . . . . 5 ∅ = ∅
3 peano1 4627 . . . . 5 ∅ ∈ ω
42, 3eqeltri 2266 . . . 4 ∅ ∈ ω
51, 4eqeltrdi 2284 . . 3 (𝐴 = ∅ → 𝐴 ∈ ω)
65adantl 277 . 2 ((𝐴 ∈ ω ∧ 𝐴 = ∅) → 𝐴 ∈ ω)
7 nnon 4643 . . . . . 6 (𝐴 ∈ ω → 𝐴 ∈ On)
87adantr 276 . . . . 5 ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ On)
9 simpr 110 . . . . 5 ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
10 onsucuni2 4597 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐴 = suc 𝑥) → suc 𝐴 = 𝐴)
1110ex 115 . . . . . 6 (𝐴 ∈ On → (𝐴 = suc 𝑥 → suc 𝐴 = 𝐴))
1211rexlimdvw 2615 . . . . 5 (𝐴 ∈ On → (∃𝑥 ∈ ω 𝐴 = suc 𝑥 → suc 𝐴 = 𝐴))
138, 9, 12sylc 62 . . . 4 ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → suc 𝐴 = 𝐴)
14 simpl 109 . . . 4 ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ ω)
1513, 14eqeltrd 2270 . . 3 ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → suc 𝐴 ∈ ω)
16 peano2b 4648 . . 3 ( 𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
1715, 16sylibr 134 . 2 ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ ω)
18 nn0suc 4637 . 2 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
196, 17, 18mpjaodan 799 1 (𝐴 ∈ ω → 𝐴 ∈ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wrex 2473  c0 3447   cuni 3836  Oncon0 4395  suc csuc 4397  ωcom 4623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-uni 3837  df-int 3872  df-tr 4129  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624
This theorem is referenced by:  nnpredlt  4657  omp1eomlem  7155  ctmlemr  7169  nnnninfeq2  7190  nninfisollemne  7192  nninfisol  7194  nnsf  15565  peano4nninf  15566
  Copyright terms: Public domain W3C validator