Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnpredcl | GIF version |
Description: The predecessor of a natural number is a natural number. This theorem is most interesting when the natural number is a successor (as seen in theorems like onsucuni2 4521) but also holds when it is ∅ by uni0 3799. (Contributed by Jim Kingdon, 31-Jul-2022.) |
Ref | Expression |
---|---|
nnpredcl | ⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 3781 | . . . 4 ⊢ (𝐴 = ∅ → ∪ 𝐴 = ∪ ∅) | |
2 | uni0 3799 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
3 | peano1 4551 | . . . . 5 ⊢ ∅ ∈ ω | |
4 | 2, 3 | eqeltri 2230 | . . . 4 ⊢ ∪ ∅ ∈ ω |
5 | 1, 4 | eqeltrdi 2248 | . . 3 ⊢ (𝐴 = ∅ → ∪ 𝐴 ∈ ω) |
6 | 5 | adantl 275 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐴 = ∅) → ∪ 𝐴 ∈ ω) |
7 | nnon 4567 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
8 | 7 | adantr 274 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ On) |
9 | simpr 109 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥) | |
10 | onsucuni2 4521 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝑥) → suc ∪ 𝐴 = 𝐴) | |
11 | 10 | ex 114 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝐴 = suc 𝑥 → suc ∪ 𝐴 = 𝐴)) |
12 | 11 | rexlimdvw 2578 | . . . . 5 ⊢ (𝐴 ∈ On → (∃𝑥 ∈ ω 𝐴 = suc 𝑥 → suc ∪ 𝐴 = 𝐴)) |
13 | 8, 9, 12 | sylc 62 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → suc ∪ 𝐴 = 𝐴) |
14 | simpl 108 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ ω) | |
15 | 13, 14 | eqeltrd 2234 | . . 3 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → suc ∪ 𝐴 ∈ ω) |
16 | peano2b 4572 | . . 3 ⊢ (∪ 𝐴 ∈ ω ↔ suc ∪ 𝐴 ∈ ω) | |
17 | 15, 16 | sylibr 133 | . 2 ⊢ ((𝐴 ∈ ω ∧ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → ∪ 𝐴 ∈ ω) |
18 | nn0suc 4561 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) | |
19 | 6, 17, 18 | mpjaodan 788 | 1 ⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 ∃wrex 2436 ∅c0 3394 ∪ cuni 3772 Oncon0 4322 suc csuc 4324 ωcom 4547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-uni 3773 df-int 3808 df-tr 4063 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 |
This theorem is referenced by: omp1eomlem 7028 ctmlemr 7042 nnsf 13539 peano4nninf 13540 |
Copyright terms: Public domain | W3C validator |