Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caucvgprprlemrnd | GIF version |
Description: Lemma for caucvgprpr 7632. The putative limit is rounded. (Contributed by Jim Kingdon, 21-Dec-2020.) |
Ref | Expression |
---|---|
caucvgprpr.f | ⊢ (𝜑 → 𝐹:N⟶P) |
caucvgprpr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) |
caucvgprpr.bnd | ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) |
caucvgprpr.lim | ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 |
Ref | Expression |
---|---|
caucvgprprlemrnd | ⊢ (𝜑 → (∀𝑠 ∈ Q (𝑠 ∈ (1st ‘𝐿) ↔ ∃𝑡 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿))) ∧ ∀𝑡 ∈ Q (𝑡 ∈ (2nd ‘𝐿) ↔ ∃𝑠 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgprpr.f | . . . . . 6 ⊢ (𝜑 → 𝐹:N⟶P) | |
2 | caucvgprpr.cau | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) | |
3 | caucvgprpr.bnd | . . . . . 6 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) | |
4 | caucvgprpr.lim | . . . . . 6 ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 | |
5 | 1, 2, 3, 4 | caucvgprprlemopl 7617 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) → ∃𝑡 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿))) |
6 | 5 | ex 114 | . . . 4 ⊢ (𝜑 → (𝑠 ∈ (1st ‘𝐿) → ∃𝑡 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿)))) |
7 | 1, 2, 3, 4 | caucvgprprlemlol 7618 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿)) → 𝑠 ∈ (1st ‘𝐿)) |
8 | 7 | 3expib 1188 | . . . . 5 ⊢ (𝜑 → ((𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿)) → 𝑠 ∈ (1st ‘𝐿))) |
9 | 8 | rexlimdvw 2578 | . . . 4 ⊢ (𝜑 → (∃𝑡 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿)) → 𝑠 ∈ (1st ‘𝐿))) |
10 | 6, 9 | impbid 128 | . . 3 ⊢ (𝜑 → (𝑠 ∈ (1st ‘𝐿) ↔ ∃𝑡 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿)))) |
11 | 10 | ralrimivw 2531 | . 2 ⊢ (𝜑 → ∀𝑠 ∈ Q (𝑠 ∈ (1st ‘𝐿) ↔ ∃𝑡 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿)))) |
12 | 1, 2, 3, 4 | caucvgprprlemopu 7619 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ (2nd ‘𝐿)) → ∃𝑠 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿))) |
13 | 12 | ex 114 | . . . 4 ⊢ (𝜑 → (𝑡 ∈ (2nd ‘𝐿) → ∃𝑠 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)))) |
14 | 1, 2, 3, 4 | caucvgprprlemupu 7620 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑡 ∈ (2nd ‘𝐿)) |
15 | 14 | 3expib 1188 | . . . . 5 ⊢ (𝜑 → ((𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑡 ∈ (2nd ‘𝐿))) |
16 | 15 | rexlimdvw 2578 | . . . 4 ⊢ (𝜑 → (∃𝑠 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑡 ∈ (2nd ‘𝐿))) |
17 | 13, 16 | impbid 128 | . . 3 ⊢ (𝜑 → (𝑡 ∈ (2nd ‘𝐿) ↔ ∃𝑠 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)))) |
18 | 17 | ralrimivw 2531 | . 2 ⊢ (𝜑 → ∀𝑡 ∈ Q (𝑡 ∈ (2nd ‘𝐿) ↔ ∃𝑠 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)))) |
19 | 11, 18 | jca 304 | 1 ⊢ (𝜑 → (∀𝑠 ∈ Q (𝑠 ∈ (1st ‘𝐿) ↔ ∃𝑡 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿))) ∧ ∀𝑡 ∈ Q (𝑡 ∈ (2nd ‘𝐿) ↔ ∃𝑠 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿))))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1335 ∈ wcel 2128 {cab 2143 ∀wral 2435 ∃wrex 2436 {crab 2439 〈cop 3563 class class class wbr 3965 ⟶wf 5166 ‘cfv 5170 (class class class)co 5824 1st c1st 6086 2nd c2nd 6087 1oc1o 6356 [cec 6478 Ncnpi 7192 <N clti 7195 ~Q ceq 7199 Qcnq 7200 +Q cplq 7202 *Qcrq 7204 <Q cltq 7205 Pcnp 7211 +P cpp 7213 <P cltp 7215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-iinf 4547 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-eprel 4249 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-suc 4331 df-iom 4550 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-ov 5827 df-oprab 5828 df-mpo 5829 df-1st 6088 df-2nd 6089 df-recs 6252 df-irdg 6317 df-1o 6363 df-2o 6364 df-oadd 6367 df-omul 6368 df-er 6480 df-ec 6482 df-qs 6486 df-ni 7224 df-pli 7225 df-mi 7226 df-lti 7227 df-plpq 7264 df-mpq 7265 df-enq 7267 df-nqqs 7268 df-plqqs 7269 df-mqqs 7270 df-1nqqs 7271 df-rq 7272 df-ltnqqs 7273 df-enq0 7344 df-nq0 7345 df-0nq0 7346 df-plq0 7347 df-mq0 7348 df-inp 7386 df-iplp 7388 df-iltp 7390 |
This theorem is referenced by: caucvgprprlemcl 7624 |
Copyright terms: Public domain | W3C validator |