ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemrnd GIF version

Theorem caucvgprprlemrnd 7785
Description: Lemma for caucvgprpr 7796. The putative limit is rounded. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemrnd (𝜑 → (∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿))) ∧ ∀𝑡Q (𝑡 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)))))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐹,𝑙,𝑡   𝑢,𝐹,𝑡,𝑟,𝑠   𝐿,𝑠,𝑡   𝑝,𝑙,𝑞,𝑟,𝑠,𝑡   𝑢,𝑝,𝑞,𝑟,𝑠   𝜑,𝑟,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑡,𝑘,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑘,𝑛,𝑞,𝑝)   𝐿(𝑢,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemrnd
StepHypRef Expression
1 caucvgprpr.f . . . . . 6 (𝜑𝐹:NP)
2 caucvgprpr.cau . . . . . 6 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
3 caucvgprpr.bnd . . . . . 6 (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
4 caucvgprpr.lim . . . . . 6 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
51, 2, 3, 4caucvgprprlemopl 7781 . . . . 5 ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)))
65ex 115 . . . 4 (𝜑 → (𝑠 ∈ (1st𝐿) → ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿))))
71, 2, 3, 4caucvgprprlemlol 7782 . . . . . 6 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
873expib 1208 . . . . 5 (𝜑 → ((𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿)))
98rexlimdvw 2618 . . . 4 (𝜑 → (∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿)))
106, 9impbid 129 . . 3 (𝜑 → (𝑠 ∈ (1st𝐿) ↔ ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿))))
1110ralrimivw 2571 . 2 (𝜑 → ∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿))))
121, 2, 3, 4caucvgprprlemopu 7783 . . . . 5 ((𝜑𝑡 ∈ (2nd𝐿)) → ∃𝑠Q (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)))
1312ex 115 . . . 4 (𝜑 → (𝑡 ∈ (2nd𝐿) → ∃𝑠Q (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿))))
141, 2, 3, 4caucvgprprlemupu 7784 . . . . . 6 ((𝜑𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)) → 𝑡 ∈ (2nd𝐿))
15143expib 1208 . . . . 5 (𝜑 → ((𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)) → 𝑡 ∈ (2nd𝐿)))
1615rexlimdvw 2618 . . . 4 (𝜑 → (∃𝑠Q (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)) → 𝑡 ∈ (2nd𝐿)))
1713, 16impbid 129 . . 3 (𝜑 → (𝑡 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿))))
1817ralrimivw 2571 . 2 (𝜑 → ∀𝑡Q (𝑡 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿))))
1911, 18jca 306 1 (𝜑 → (∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿))) ∧ ∀𝑡Q (𝑡 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  {cab 2182  wral 2475  wrex 2476  {crab 2479  cop 3626   class class class wbr 4034  wf 5255  cfv 5259  (class class class)co 5925  1st c1st 6205  2nd c2nd 6206  1oc1o 6476  [cec 6599  Ncnpi 7356   <N clti 7359   ~Q ceq 7363  Qcnq 7364   +Q cplq 7366  *Qcrq 7368   <Q cltq 7369  Pcnp 7375   +P cpp 7377  <P cltp 7379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-iplp 7552  df-iltp 7554
This theorem is referenced by:  caucvgprprlemcl  7788
  Copyright terms: Public domain W3C validator