![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > suplocexprlemss | GIF version |
Description: Lemma for suplocexpr 7787. 𝐴 is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.) |
Ref | Expression |
---|---|
suplocexpr.m | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
suplocexpr.ub | ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) |
suplocexpr.loc | ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) |
Ref | Expression |
---|---|
suplocexprlemss | ⊢ (𝜑 → 𝐴 ⊆ P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suplocexpr.ub | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) | |
2 | rsp 2541 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → (𝑦 ∈ 𝐴 → 𝑦<P 𝑥)) | |
3 | ltrelpr 7567 | . . . . . . . 8 ⊢ <P ⊆ (P × P) | |
4 | 3 | brel 4712 | . . . . . . 7 ⊢ (𝑦<P 𝑥 → (𝑦 ∈ P ∧ 𝑥 ∈ P)) |
5 | 4 | simpld 112 | . . . . . 6 ⊢ (𝑦<P 𝑥 → 𝑦 ∈ P) |
6 | 2, 5 | syl6 33 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → (𝑦 ∈ 𝐴 → 𝑦 ∈ P)) |
7 | 6 | a1i 9 | . . . 4 ⊢ (𝜑 → (∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → (𝑦 ∈ 𝐴 → 𝑦 ∈ P))) |
8 | 7 | rexlimdvw 2615 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → (𝑦 ∈ 𝐴 → 𝑦 ∈ P))) |
9 | 1, 8 | mpd 13 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐴 → 𝑦 ∈ P)) |
10 | 9 | ssrdv 3186 | 1 ⊢ (𝜑 → 𝐴 ⊆ P) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 709 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 ⊆ wss 3154 class class class wbr 4030 Pcnp 7353 <P cltp 7357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-iltp 7532 |
This theorem is referenced by: suplocexprlemml 7778 suplocexprlemrl 7779 suplocexprlemmu 7780 suplocexprlemru 7781 suplocexprlemdisj 7782 suplocexprlemloc 7783 suplocexprlemex 7784 suplocexprlemub 7785 suplocexprlemlub 7786 |
Copyright terms: Public domain | W3C validator |