ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemss GIF version

Theorem suplocexprlemss 7890
Description: Lemma for suplocexpr 7900. 𝐴 is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
Assertion
Ref Expression
suplocexprlemss (𝜑𝐴P)
Distinct variable groups:   𝑥,𝐴,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)

Proof of Theorem suplocexprlemss
StepHypRef Expression
1 suplocexpr.ub . . 3 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
2 rsp 2577 . . . . . 6 (∀𝑦𝐴 𝑦<P 𝑥 → (𝑦𝐴𝑦<P 𝑥))
3 ltrelpr 7680 . . . . . . . 8 <P ⊆ (P × P)
43brel 4768 . . . . . . 7 (𝑦<P 𝑥 → (𝑦P𝑥P))
54simpld 112 . . . . . 6 (𝑦<P 𝑥𝑦P)
62, 5syl6 33 . . . . 5 (∀𝑦𝐴 𝑦<P 𝑥 → (𝑦𝐴𝑦P))
76a1i 9 . . . 4 (𝜑 → (∀𝑦𝐴 𝑦<P 𝑥 → (𝑦𝐴𝑦P)))
87rexlimdvw 2652 . . 3 (𝜑 → (∃𝑥P𝑦𝐴 𝑦<P 𝑥 → (𝑦𝐴𝑦P)))
91, 8mpd 13 . 2 (𝜑 → (𝑦𝐴𝑦P))
109ssrdv 3230 1 (𝜑𝐴P)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 713  wex 1538  wcel 2200  wral 2508  wrex 2509  wss 3197   class class class wbr 4082  Pcnp 7466  <P cltp 7470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4722  df-iltp 7645
This theorem is referenced by:  suplocexprlemml  7891  suplocexprlemrl  7892  suplocexprlemmu  7893  suplocexprlemru  7894  suplocexprlemdisj  7895  suplocexprlemloc  7896  suplocexprlemex  7897  suplocexprlemub  7898  suplocexprlemlub  7899
  Copyright terms: Public domain W3C validator