Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suplocexprlemss | GIF version |
Description: Lemma for suplocexpr 7687. 𝐴 is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.) |
Ref | Expression |
---|---|
suplocexpr.m | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
suplocexpr.ub | ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) |
suplocexpr.loc | ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) |
Ref | Expression |
---|---|
suplocexprlemss | ⊢ (𝜑 → 𝐴 ⊆ P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suplocexpr.ub | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) | |
2 | rsp 2517 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → (𝑦 ∈ 𝐴 → 𝑦<P 𝑥)) | |
3 | ltrelpr 7467 | . . . . . . . 8 ⊢ <P ⊆ (P × P) | |
4 | 3 | brel 4663 | . . . . . . 7 ⊢ (𝑦<P 𝑥 → (𝑦 ∈ P ∧ 𝑥 ∈ P)) |
5 | 4 | simpld 111 | . . . . . 6 ⊢ (𝑦<P 𝑥 → 𝑦 ∈ P) |
6 | 2, 5 | syl6 33 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → (𝑦 ∈ 𝐴 → 𝑦 ∈ P)) |
7 | 6 | a1i 9 | . . . 4 ⊢ (𝜑 → (∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → (𝑦 ∈ 𝐴 → 𝑦 ∈ P))) |
8 | 7 | rexlimdvw 2591 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → (𝑦 ∈ 𝐴 → 𝑦 ∈ P))) |
9 | 1, 8 | mpd 13 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐴 → 𝑦 ∈ P)) |
10 | 9 | ssrdv 3153 | 1 ⊢ (𝜑 → 𝐴 ⊆ P) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 703 ∃wex 1485 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 ⊆ wss 3121 class class class wbr 3989 Pcnp 7253 <P cltp 7257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-iltp 7432 |
This theorem is referenced by: suplocexprlemml 7678 suplocexprlemrl 7679 suplocexprlemmu 7680 suplocexprlemru 7681 suplocexprlemdisj 7682 suplocexprlemloc 7683 suplocexprlemex 7684 suplocexprlemub 7685 suplocexprlemlub 7686 |
Copyright terms: Public domain | W3C validator |