ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemss GIF version

Theorem suplocexprlemss 7775
Description: Lemma for suplocexpr 7785. 𝐴 is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
Assertion
Ref Expression
suplocexprlemss (𝜑𝐴P)
Distinct variable groups:   𝑥,𝐴,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)

Proof of Theorem suplocexprlemss
StepHypRef Expression
1 suplocexpr.ub . . 3 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
2 rsp 2541 . . . . . 6 (∀𝑦𝐴 𝑦<P 𝑥 → (𝑦𝐴𝑦<P 𝑥))
3 ltrelpr 7565 . . . . . . . 8 <P ⊆ (P × P)
43brel 4711 . . . . . . 7 (𝑦<P 𝑥 → (𝑦P𝑥P))
54simpld 112 . . . . . 6 (𝑦<P 𝑥𝑦P)
62, 5syl6 33 . . . . 5 (∀𝑦𝐴 𝑦<P 𝑥 → (𝑦𝐴𝑦P))
76a1i 9 . . . 4 (𝜑 → (∀𝑦𝐴 𝑦<P 𝑥 → (𝑦𝐴𝑦P)))
87rexlimdvw 2615 . . 3 (𝜑 → (∃𝑥P𝑦𝐴 𝑦<P 𝑥 → (𝑦𝐴𝑦P)))
91, 8mpd 13 . 2 (𝜑 → (𝑦𝐴𝑦P))
109ssrdv 3185 1 (𝜑𝐴P)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709  wex 1503  wcel 2164  wral 2472  wrex 2473  wss 3153   class class class wbr 4029  Pcnp 7351  <P cltp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-iltp 7530
This theorem is referenced by:  suplocexprlemml  7776  suplocexprlemrl  7777  suplocexprlemmu  7778  suplocexprlemru  7779  suplocexprlemdisj  7780  suplocexprlemloc  7781  suplocexprlemex  7782  suplocexprlemub  7783  suplocexprlemlub  7784
  Copyright terms: Public domain W3C validator