| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suplocexprlemss | GIF version | ||
| Description: Lemma for suplocexpr 7900. 𝐴 is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.) |
| Ref | Expression |
|---|---|
| suplocexpr.m | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
| suplocexpr.ub | ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) |
| suplocexpr.loc | ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) |
| Ref | Expression |
|---|---|
| suplocexprlemss | ⊢ (𝜑 → 𝐴 ⊆ P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suplocexpr.ub | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) | |
| 2 | rsp 2577 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → (𝑦 ∈ 𝐴 → 𝑦<P 𝑥)) | |
| 3 | ltrelpr 7680 | . . . . . . . 8 ⊢ <P ⊆ (P × P) | |
| 4 | 3 | brel 4768 | . . . . . . 7 ⊢ (𝑦<P 𝑥 → (𝑦 ∈ P ∧ 𝑥 ∈ P)) |
| 5 | 4 | simpld 112 | . . . . . 6 ⊢ (𝑦<P 𝑥 → 𝑦 ∈ P) |
| 6 | 2, 5 | syl6 33 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → (𝑦 ∈ 𝐴 → 𝑦 ∈ P)) |
| 7 | 6 | a1i 9 | . . . 4 ⊢ (𝜑 → (∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → (𝑦 ∈ 𝐴 → 𝑦 ∈ P))) |
| 8 | 7 | rexlimdvw 2652 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → (𝑦 ∈ 𝐴 → 𝑦 ∈ P))) |
| 9 | 1, 8 | mpd 13 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐴 → 𝑦 ∈ P)) |
| 10 | 9 | ssrdv 3230 | 1 ⊢ (𝜑 → 𝐴 ⊆ P) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 713 ∃wex 1538 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 ⊆ wss 3197 class class class wbr 4082 Pcnp 7466 <P cltp 7470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4722 df-iltp 7645 |
| This theorem is referenced by: suplocexprlemml 7891 suplocexprlemrl 7892 suplocexprlemmu 7893 suplocexprlemru 7894 suplocexprlemdisj 7895 suplocexprlemloc 7896 suplocexprlemex 7897 suplocexprlemub 7898 suplocexprlemlub 7899 |
| Copyright terms: Public domain | W3C validator |