ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemss GIF version

Theorem suplocexprlemss 7677
Description: Lemma for suplocexpr 7687. 𝐴 is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
Assertion
Ref Expression
suplocexprlemss (𝜑𝐴P)
Distinct variable groups:   𝑥,𝐴,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)

Proof of Theorem suplocexprlemss
StepHypRef Expression
1 suplocexpr.ub . . 3 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
2 rsp 2517 . . . . . 6 (∀𝑦𝐴 𝑦<P 𝑥 → (𝑦𝐴𝑦<P 𝑥))
3 ltrelpr 7467 . . . . . . . 8 <P ⊆ (P × P)
43brel 4663 . . . . . . 7 (𝑦<P 𝑥 → (𝑦P𝑥P))
54simpld 111 . . . . . 6 (𝑦<P 𝑥𝑦P)
62, 5syl6 33 . . . . 5 (∀𝑦𝐴 𝑦<P 𝑥 → (𝑦𝐴𝑦P))
76a1i 9 . . . 4 (𝜑 → (∀𝑦𝐴 𝑦<P 𝑥 → (𝑦𝐴𝑦P)))
87rexlimdvw 2591 . . 3 (𝜑 → (∃𝑥P𝑦𝐴 𝑦<P 𝑥 → (𝑦𝐴𝑦P)))
91, 8mpd 13 . 2 (𝜑 → (𝑦𝐴𝑦P))
109ssrdv 3153 1 (𝜑𝐴P)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 703  wex 1485  wcel 2141  wral 2448  wrex 2449  wss 3121   class class class wbr 3989  Pcnp 7253  <P cltp 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-iltp 7432
This theorem is referenced by:  suplocexprlemml  7678  suplocexprlemrl  7679  suplocexprlemmu  7680  suplocexprlemru  7681  suplocexprlemdisj  7682  suplocexprlemloc  7683  suplocexprlemex  7684  suplocexprlemub  7685  suplocexprlemlub  7686
  Copyright terms: Public domain W3C validator