| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suplocexprlemss | GIF version | ||
| Description: Lemma for suplocexpr 7851. 𝐴 is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.) |
| Ref | Expression |
|---|---|
| suplocexpr.m | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
| suplocexpr.ub | ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) |
| suplocexpr.loc | ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) |
| Ref | Expression |
|---|---|
| suplocexprlemss | ⊢ (𝜑 → 𝐴 ⊆ P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suplocexpr.ub | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) | |
| 2 | rsp 2554 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → (𝑦 ∈ 𝐴 → 𝑦<P 𝑥)) | |
| 3 | ltrelpr 7631 | . . . . . . . 8 ⊢ <P ⊆ (P × P) | |
| 4 | 3 | brel 4732 | . . . . . . 7 ⊢ (𝑦<P 𝑥 → (𝑦 ∈ P ∧ 𝑥 ∈ P)) |
| 5 | 4 | simpld 112 | . . . . . 6 ⊢ (𝑦<P 𝑥 → 𝑦 ∈ P) |
| 6 | 2, 5 | syl6 33 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → (𝑦 ∈ 𝐴 → 𝑦 ∈ P)) |
| 7 | 6 | a1i 9 | . . . 4 ⊢ (𝜑 → (∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → (𝑦 ∈ 𝐴 → 𝑦 ∈ P))) |
| 8 | 7 | rexlimdvw 2628 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → (𝑦 ∈ 𝐴 → 𝑦 ∈ P))) |
| 9 | 1, 8 | mpd 13 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐴 → 𝑦 ∈ P)) |
| 10 | 9 | ssrdv 3201 | 1 ⊢ (𝜑 → 𝐴 ⊆ P) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 ∃wex 1516 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 ⊆ wss 3168 class class class wbr 4048 Pcnp 7417 <P cltp 7421 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 df-opab 4111 df-xp 4686 df-iltp 7596 |
| This theorem is referenced by: suplocexprlemml 7842 suplocexprlemrl 7843 suplocexprlemmu 7844 suplocexprlemru 7845 suplocexprlemdisj 7846 suplocexprlemloc 7847 suplocexprlemex 7848 suplocexprlemub 7849 suplocexprlemlub 7850 |
| Copyright terms: Public domain | W3C validator |