ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemss GIF version

Theorem suplocexprlemss 7841
Description: Lemma for suplocexpr 7851. 𝐴 is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
Assertion
Ref Expression
suplocexprlemss (𝜑𝐴P)
Distinct variable groups:   𝑥,𝐴,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)

Proof of Theorem suplocexprlemss
StepHypRef Expression
1 suplocexpr.ub . . 3 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
2 rsp 2554 . . . . . 6 (∀𝑦𝐴 𝑦<P 𝑥 → (𝑦𝐴𝑦<P 𝑥))
3 ltrelpr 7631 . . . . . . . 8 <P ⊆ (P × P)
43brel 4732 . . . . . . 7 (𝑦<P 𝑥 → (𝑦P𝑥P))
54simpld 112 . . . . . 6 (𝑦<P 𝑥𝑦P)
62, 5syl6 33 . . . . 5 (∀𝑦𝐴 𝑦<P 𝑥 → (𝑦𝐴𝑦P))
76a1i 9 . . . 4 (𝜑 → (∀𝑦𝐴 𝑦<P 𝑥 → (𝑦𝐴𝑦P)))
87rexlimdvw 2628 . . 3 (𝜑 → (∃𝑥P𝑦𝐴 𝑦<P 𝑥 → (𝑦𝐴𝑦P)))
91, 8mpd 13 . 2 (𝜑 → (𝑦𝐴𝑦P))
109ssrdv 3201 1 (𝜑𝐴P)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 710  wex 1516  wcel 2177  wral 2485  wrex 2486  wss 3168   class class class wbr 4048  Pcnp 7417  <P cltp 7421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-br 4049  df-opab 4111  df-xp 4686  df-iltp 7596
This theorem is referenced by:  suplocexprlemml  7842  suplocexprlemrl  7843  suplocexprlemmu  7844  suplocexprlemru  7845  suplocexprlemdisj  7846  suplocexprlemloc  7847  suplocexprlemex  7848  suplocexprlemub  7849  suplocexprlemlub  7850
  Copyright terms: Public domain W3C validator