| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suplocexprlemss | GIF version | ||
| Description: Lemma for suplocexpr 7792. 𝐴 is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.) |
| Ref | Expression |
|---|---|
| suplocexpr.m | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
| suplocexpr.ub | ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) |
| suplocexpr.loc | ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) |
| Ref | Expression |
|---|---|
| suplocexprlemss | ⊢ (𝜑 → 𝐴 ⊆ P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suplocexpr.ub | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) | |
| 2 | rsp 2544 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → (𝑦 ∈ 𝐴 → 𝑦<P 𝑥)) | |
| 3 | ltrelpr 7572 | . . . . . . . 8 ⊢ <P ⊆ (P × P) | |
| 4 | 3 | brel 4715 | . . . . . . 7 ⊢ (𝑦<P 𝑥 → (𝑦 ∈ P ∧ 𝑥 ∈ P)) |
| 5 | 4 | simpld 112 | . . . . . 6 ⊢ (𝑦<P 𝑥 → 𝑦 ∈ P) |
| 6 | 2, 5 | syl6 33 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → (𝑦 ∈ 𝐴 → 𝑦 ∈ P)) |
| 7 | 6 | a1i 9 | . . . 4 ⊢ (𝜑 → (∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → (𝑦 ∈ 𝐴 → 𝑦 ∈ P))) |
| 8 | 7 | rexlimdvw 2618 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥 → (𝑦 ∈ 𝐴 → 𝑦 ∈ P))) |
| 9 | 1, 8 | mpd 13 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐴 → 𝑦 ∈ P)) |
| 10 | 9 | ssrdv 3189 | 1 ⊢ (𝜑 → 𝐴 ⊆ P) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 ∃wex 1506 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ⊆ wss 3157 class class class wbr 4033 Pcnp 7358 <P cltp 7362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-iltp 7537 |
| This theorem is referenced by: suplocexprlemml 7783 suplocexprlemrl 7784 suplocexprlemmu 7785 suplocexprlemru 7786 suplocexprlemdisj 7787 suplocexprlemloc 7788 suplocexprlemex 7789 suplocexprlemub 7790 suplocexprlemlub 7791 |
| Copyright terms: Public domain | W3C validator |