![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2onetap | GIF version |
Description: Negated equality is a tight apartness on 2o. (Contributed by Jim Kingdon, 6-Feb-2025.) |
Ref | Expression |
---|---|
2onetap | ⊢ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} TAp 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2onn 6574 | . . . . 5 ⊢ 2o ∈ ω | |
2 | elnn 4638 | . . . . 5 ⊢ ((𝑥 ∈ 2o ∧ 2o ∈ ω) → 𝑥 ∈ ω) | |
3 | 1, 2 | mpan2 425 | . . . 4 ⊢ (𝑥 ∈ 2o → 𝑥 ∈ ω) |
4 | elnn 4638 | . . . . 5 ⊢ ((𝑦 ∈ 2o ∧ 2o ∈ ω) → 𝑦 ∈ ω) | |
5 | 1, 4 | mpan2 425 | . . . 4 ⊢ (𝑦 ∈ 2o → 𝑦 ∈ ω) |
6 | nndceq 6552 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → DECID 𝑥 = 𝑦) | |
7 | 3, 5, 6 | syl2an 289 | . . 3 ⊢ ((𝑥 ∈ 2o ∧ 𝑦 ∈ 2o) → DECID 𝑥 = 𝑦) |
8 | 7 | rgen2 2580 | . 2 ⊢ ∀𝑥 ∈ 2o ∀𝑦 ∈ 2o DECID 𝑥 = 𝑦 |
9 | netap 7314 | . 2 ⊢ (∀𝑥 ∈ 2o ∀𝑦 ∈ 2o DECID 𝑥 = 𝑦 → {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} TAp 2o) | |
10 | 8, 9 | ax-mp 5 | 1 ⊢ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} TAp 2o |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 DECID wdc 835 ∈ wcel 2164 ≠ wne 2364 ∀wral 2472 {copab 4089 ωcom 4622 2oc2o 6463 TAp wtap 7309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-tr 4128 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-1o 6469 df-2o 6470 df-pap 7308 df-tap 7310 |
This theorem is referenced by: 2omotaplemst 7318 |
Copyright terms: Public domain | W3C validator |