ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2onetap GIF version

Theorem 2onetap 7315
Description: Negated equality is a tight apartness on 2o. (Contributed by Jim Kingdon, 6-Feb-2025.)
Assertion
Ref Expression
2onetap {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o
Distinct variable group:   𝑣,𝑢

Proof of Theorem 2onetap
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2onn 6574 . . . . 5 2o ∈ ω
2 elnn 4638 . . . . 5 ((𝑥 ∈ 2o ∧ 2o ∈ ω) → 𝑥 ∈ ω)
31, 2mpan2 425 . . . 4 (𝑥 ∈ 2o𝑥 ∈ ω)
4 elnn 4638 . . . . 5 ((𝑦 ∈ 2o ∧ 2o ∈ ω) → 𝑦 ∈ ω)
51, 4mpan2 425 . . . 4 (𝑦 ∈ 2o𝑦 ∈ ω)
6 nndceq 6552 . . . 4 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → DECID 𝑥 = 𝑦)
73, 5, 6syl2an 289 . . 3 ((𝑥 ∈ 2o𝑦 ∈ 2o) → DECID 𝑥 = 𝑦)
87rgen2 2580 . 2 𝑥 ∈ 2o𝑦 ∈ 2o DECID 𝑥 = 𝑦
9 netap 7314 . 2 (∀𝑥 ∈ 2o𝑦 ∈ 2o DECID 𝑥 = 𝑦 → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o)
108, 9ax-mp 5 1 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o
Colors of variables: wff set class
Syntax hints:  wa 104  DECID wdc 835  wcel 2164  wne 2364  wral 2472  {copab 4089  ωcom 4622  2oc2o 6463   TAp wtap 7309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-1o 6469  df-2o 6470  df-pap 7308  df-tap 7310
This theorem is referenced by:  2omotaplemst  7318
  Copyright terms: Public domain W3C validator