ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2onetap GIF version

Theorem 2onetap 7267
Description: Negated equality is a tight apartness on 2o. (Contributed by Jim Kingdon, 6-Feb-2025.)
Assertion
Ref Expression
2onetap {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o
Distinct variable group:   𝑣,𝑢

Proof of Theorem 2onetap
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2onn 6535 . . . . 5 2o ∈ ω
2 elnn 4617 . . . . 5 ((𝑥 ∈ 2o ∧ 2o ∈ ω) → 𝑥 ∈ ω)
31, 2mpan2 425 . . . 4 (𝑥 ∈ 2o𝑥 ∈ ω)
4 elnn 4617 . . . . 5 ((𝑦 ∈ 2o ∧ 2o ∈ ω) → 𝑦 ∈ ω)
51, 4mpan2 425 . . . 4 (𝑦 ∈ 2o𝑦 ∈ ω)
6 nndceq 6513 . . . 4 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → DECID 𝑥 = 𝑦)
73, 5, 6syl2an 289 . . 3 ((𝑥 ∈ 2o𝑦 ∈ 2o) → DECID 𝑥 = 𝑦)
87rgen2 2573 . 2 𝑥 ∈ 2o𝑦 ∈ 2o DECID 𝑥 = 𝑦
9 netap 7266 . 2 (∀𝑥 ∈ 2o𝑦 ∈ 2o DECID 𝑥 = 𝑦 → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o)
108, 9ax-mp 5 1 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o
Colors of variables: wff set class
Syntax hints:  wa 104  DECID wdc 835  wcel 2158  wne 2357  wral 2465  {copab 4075  ωcom 4601  2oc2o 6424   TAp wtap 7261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-tr 4114  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-1o 6430  df-2o 6431  df-pap 7260  df-tap 7262
This theorem is referenced by:  2omotaplemst  7270
  Copyright terms: Public domain W3C validator