![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2onetap | GIF version |
Description: Negated equality is a tight apartness on 2o. (Contributed by Jim Kingdon, 6-Feb-2025.) |
Ref | Expression |
---|---|
2onetap | ⊢ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} TAp 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2onn 6524 | . . . . 5 ⊢ 2o ∈ ω | |
2 | elnn 4607 | . . . . 5 ⊢ ((𝑥 ∈ 2o ∧ 2o ∈ ω) → 𝑥 ∈ ω) | |
3 | 1, 2 | mpan2 425 | . . . 4 ⊢ (𝑥 ∈ 2o → 𝑥 ∈ ω) |
4 | elnn 4607 | . . . . 5 ⊢ ((𝑦 ∈ 2o ∧ 2o ∈ ω) → 𝑦 ∈ ω) | |
5 | 1, 4 | mpan2 425 | . . . 4 ⊢ (𝑦 ∈ 2o → 𝑦 ∈ ω) |
6 | nndceq 6502 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → DECID 𝑥 = 𝑦) | |
7 | 3, 5, 6 | syl2an 289 | . . 3 ⊢ ((𝑥 ∈ 2o ∧ 𝑦 ∈ 2o) → DECID 𝑥 = 𝑦) |
8 | 7 | rgen2 2563 | . 2 ⊢ ∀𝑥 ∈ 2o ∀𝑦 ∈ 2o DECID 𝑥 = 𝑦 |
9 | netap 7255 | . 2 ⊢ (∀𝑥 ∈ 2o ∀𝑦 ∈ 2o DECID 𝑥 = 𝑦 → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} TAp 2o) | |
10 | 8, 9 | ax-mp 5 | 1 ⊢ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} TAp 2o |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 DECID wdc 834 ∈ wcel 2148 ≠ wne 2347 ∀wral 2455 {copab 4065 ωcom 4591 2oc2o 6413 TAp wtap 7250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-tr 4104 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-1o 6419 df-2o 6420 df-pap 7249 df-tap 7251 |
This theorem is referenced by: 2omotaplemst 7259 |
Copyright terms: Public domain | W3C validator |