| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2onetap | GIF version | ||
| Description: Negated equality is a tight apartness on 2o. (Contributed by Jim Kingdon, 6-Feb-2025.) |
| Ref | Expression |
|---|---|
| 2onetap | ⊢ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} TAp 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2onn 6630 | . . . . 5 ⊢ 2o ∈ ω | |
| 2 | elnn 4672 | . . . . 5 ⊢ ((𝑥 ∈ 2o ∧ 2o ∈ ω) → 𝑥 ∈ ω) | |
| 3 | 1, 2 | mpan2 425 | . . . 4 ⊢ (𝑥 ∈ 2o → 𝑥 ∈ ω) |
| 4 | elnn 4672 | . . . . 5 ⊢ ((𝑦 ∈ 2o ∧ 2o ∈ ω) → 𝑦 ∈ ω) | |
| 5 | 1, 4 | mpan2 425 | . . . 4 ⊢ (𝑦 ∈ 2o → 𝑦 ∈ ω) |
| 6 | nndceq 6608 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → DECID 𝑥 = 𝑦) | |
| 7 | 3, 5, 6 | syl2an 289 | . . 3 ⊢ ((𝑥 ∈ 2o ∧ 𝑦 ∈ 2o) → DECID 𝑥 = 𝑦) |
| 8 | 7 | rgen2 2594 | . 2 ⊢ ∀𝑥 ∈ 2o ∀𝑦 ∈ 2o DECID 𝑥 = 𝑦 |
| 9 | netap 7401 | . 2 ⊢ (∀𝑥 ∈ 2o ∀𝑦 ∈ 2o DECID 𝑥 = 𝑦 → {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} TAp 2o) | |
| 10 | 8, 9 | ax-mp 5 | 1 ⊢ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} TAp 2o |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 DECID wdc 836 ∈ wcel 2178 ≠ wne 2378 ∀wral 2486 {copab 4120 ωcom 4656 2oc2o 6519 TAp wtap 7396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-tr 4159 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-1o 6525 df-2o 6526 df-pap 7395 df-tap 7397 |
| This theorem is referenced by: 2omotaplemst 7405 |
| Copyright terms: Public domain | W3C validator |