ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2onetap GIF version

Theorem 2onetap 7256
Description: Negated equality is a tight apartness on 2o. (Contributed by Jim Kingdon, 6-Feb-2025.)
Assertion
Ref Expression
2onetap {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o
Distinct variable group:   𝑣,𝑢

Proof of Theorem 2onetap
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2onn 6524 . . . . 5 2o ∈ ω
2 elnn 4607 . . . . 5 ((𝑥 ∈ 2o ∧ 2o ∈ ω) → 𝑥 ∈ ω)
31, 2mpan2 425 . . . 4 (𝑥 ∈ 2o𝑥 ∈ ω)
4 elnn 4607 . . . . 5 ((𝑦 ∈ 2o ∧ 2o ∈ ω) → 𝑦 ∈ ω)
51, 4mpan2 425 . . . 4 (𝑦 ∈ 2o𝑦 ∈ ω)
6 nndceq 6502 . . . 4 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → DECID 𝑥 = 𝑦)
73, 5, 6syl2an 289 . . 3 ((𝑥 ∈ 2o𝑦 ∈ 2o) → DECID 𝑥 = 𝑦)
87rgen2 2563 . 2 𝑥 ∈ 2o𝑦 ∈ 2o DECID 𝑥 = 𝑦
9 netap 7255 . 2 (∀𝑥 ∈ 2o𝑦 ∈ 2o DECID 𝑥 = 𝑦 → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o)
108, 9ax-mp 5 1 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o
Colors of variables: wff set class
Syntax hints:  wa 104  DECID wdc 834  wcel 2148  wne 2347  wral 2455  {copab 4065  ωcom 4591  2oc2o 6413   TAp wtap 7250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-tr 4104  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-1o 6419  df-2o 6420  df-pap 7249  df-tap 7251
This theorem is referenced by:  2omotaplemst  7259
  Copyright terms: Public domain W3C validator