| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2onetap | GIF version | ||
| Description: Negated equality is a tight apartness on 2o. (Contributed by Jim Kingdon, 6-Feb-2025.) |
| Ref | Expression |
|---|---|
| 2onetap | ⊢ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} TAp 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2onn 6665 | . . . . 5 ⊢ 2o ∈ ω | |
| 2 | elnn 4697 | . . . . 5 ⊢ ((𝑥 ∈ 2o ∧ 2o ∈ ω) → 𝑥 ∈ ω) | |
| 3 | 1, 2 | mpan2 425 | . . . 4 ⊢ (𝑥 ∈ 2o → 𝑥 ∈ ω) |
| 4 | elnn 4697 | . . . . 5 ⊢ ((𝑦 ∈ 2o ∧ 2o ∈ ω) → 𝑦 ∈ ω) | |
| 5 | 1, 4 | mpan2 425 | . . . 4 ⊢ (𝑦 ∈ 2o → 𝑦 ∈ ω) |
| 6 | nndceq 6643 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → DECID 𝑥 = 𝑦) | |
| 7 | 3, 5, 6 | syl2an 289 | . . 3 ⊢ ((𝑥 ∈ 2o ∧ 𝑦 ∈ 2o) → DECID 𝑥 = 𝑦) |
| 8 | 7 | rgen2 2616 | . 2 ⊢ ∀𝑥 ∈ 2o ∀𝑦 ∈ 2o DECID 𝑥 = 𝑦 |
| 9 | netap 7436 | . 2 ⊢ (∀𝑥 ∈ 2o ∀𝑦 ∈ 2o DECID 𝑥 = 𝑦 → {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} TAp 2o) | |
| 10 | 8, 9 | ax-mp 5 | 1 ⊢ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} TAp 2o |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 DECID wdc 839 ∈ wcel 2200 ≠ wne 2400 ∀wral 2508 {copab 4143 ωcom 4681 2oc2o 6554 TAp wtap 7431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-tr 4182 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-1o 6560 df-2o 6561 df-pap 7430 df-tap 7432 |
| This theorem is referenced by: 2omotaplemst 7440 |
| Copyright terms: Public domain | W3C validator |