ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f2ndres GIF version

Theorem f2ndres 6139
Description: Mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
f2ndres (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵

Proof of Theorem f2ndres
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2733 . . . . . . . 8 𝑦 ∈ V
2 vex 2733 . . . . . . . 8 𝑧 ∈ V
31, 2op2nda 5095 . . . . . . 7 ran {⟨𝑦, 𝑧⟩} = 𝑧
43eleq1i 2236 . . . . . 6 ( ran {⟨𝑦, 𝑧⟩} ∈ 𝐵𝑧𝐵)
54biimpri 132 . . . . 5 (𝑧𝐵 ran {⟨𝑦, 𝑧⟩} ∈ 𝐵)
65adantl 275 . . . 4 ((𝑦𝐴𝑧𝐵) → ran {⟨𝑦, 𝑧⟩} ∈ 𝐵)
76rgen2 2556 . . 3 𝑦𝐴𝑧𝐵 ran {⟨𝑦, 𝑧⟩} ∈ 𝐵
8 sneq 3594 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → {𝑥} = {⟨𝑦, 𝑧⟩})
98rneqd 4840 . . . . . 6 (𝑥 = ⟨𝑦, 𝑧⟩ → ran {𝑥} = ran {⟨𝑦, 𝑧⟩})
109unieqd 3807 . . . . 5 (𝑥 = ⟨𝑦, 𝑧⟩ → ran {𝑥} = ran {⟨𝑦, 𝑧⟩})
1110eleq1d 2239 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → ( ran {𝑥} ∈ 𝐵 ran {⟨𝑦, 𝑧⟩} ∈ 𝐵))
1211ralxp 4754 . . 3 (∀𝑥 ∈ (𝐴 × 𝐵) ran {𝑥} ∈ 𝐵 ↔ ∀𝑦𝐴𝑧𝐵 ran {⟨𝑦, 𝑧⟩} ∈ 𝐵)
137, 12mpbir 145 . 2 𝑥 ∈ (𝐴 × 𝐵) ran {𝑥} ∈ 𝐵
14 df-2nd 6120 . . . . 5 2nd = (𝑥 ∈ V ↦ ran {𝑥})
1514reseq1i 4887 . . . 4 (2nd ↾ (𝐴 × 𝐵)) = ((𝑥 ∈ V ↦ ran {𝑥}) ↾ (𝐴 × 𝐵))
16 ssv 3169 . . . . 5 (𝐴 × 𝐵) ⊆ V
17 resmpt 4939 . . . . 5 ((𝐴 × 𝐵) ⊆ V → ((𝑥 ∈ V ↦ ran {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ran {𝑥}))
1816, 17ax-mp 5 . . . 4 ((𝑥 ∈ V ↦ ran {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ran {𝑥})
1915, 18eqtri 2191 . . 3 (2nd ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ran {𝑥})
2019fmpt 5646 . 2 (∀𝑥 ∈ (𝐴 × 𝐵) ran {𝑥} ∈ 𝐵 ↔ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵)
2113, 20mpbi 144 1 (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141  wral 2448  Vcvv 2730  wss 3121  {csn 3583  cop 3586   cuni 3796  cmpt 4050   × cxp 4609  ran crn 4612  cres 4613  wf 5194  2nd c2nd 6118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-2nd 6120
This theorem is referenced by:  fo2ndresm  6141  2ndcof  6143  f2ndf  6205  eucalgcvga  12012  tx2cn  13064
  Copyright terms: Public domain W3C validator