![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f2ndres | GIF version |
Description: Mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
f2ndres | ⊢ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2658 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
2 | vex 2658 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
3 | 1, 2 | op2nda 4979 | . . . . . . 7 ⊢ ∪ ran {〈𝑦, 𝑧〉} = 𝑧 |
4 | 3 | eleq1i 2178 | . . . . . 6 ⊢ (∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵 ↔ 𝑧 ∈ 𝐵) |
5 | 4 | biimpri 132 | . . . . 5 ⊢ (𝑧 ∈ 𝐵 → ∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵) |
6 | 5 | adantl 273 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → ∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵) |
7 | 6 | rgen2 2490 | . . 3 ⊢ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵 |
8 | sneq 3502 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → {𝑥} = {〈𝑦, 𝑧〉}) | |
9 | 8 | rneqd 4726 | . . . . . 6 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ran {𝑥} = ran {〈𝑦, 𝑧〉}) |
10 | 9 | unieqd 3711 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ∪ ran {𝑥} = ∪ ran {〈𝑦, 𝑧〉}) |
11 | 10 | eleq1d 2181 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (∪ ran {𝑥} ∈ 𝐵 ↔ ∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵)) |
12 | 11 | ralxp 4640 | . . 3 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ ran {𝑥} ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵) |
13 | 7, 12 | mpbir 145 | . 2 ⊢ ∀𝑥 ∈ (𝐴 × 𝐵)∪ ran {𝑥} ∈ 𝐵 |
14 | df-2nd 5991 | . . . . 5 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
15 | 14 | reseq1i 4771 | . . . 4 ⊢ (2nd ↾ (𝐴 × 𝐵)) = ((𝑥 ∈ V ↦ ∪ ran {𝑥}) ↾ (𝐴 × 𝐵)) |
16 | ssv 3083 | . . . . 5 ⊢ (𝐴 × 𝐵) ⊆ V | |
17 | resmpt 4823 | . . . . 5 ⊢ ((𝐴 × 𝐵) ⊆ V → ((𝑥 ∈ V ↦ ∪ ran {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ran {𝑥})) | |
18 | 16, 17 | ax-mp 7 | . . . 4 ⊢ ((𝑥 ∈ V ↦ ∪ ran {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ran {𝑥}) |
19 | 15, 18 | eqtri 2133 | . . 3 ⊢ (2nd ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ran {𝑥}) |
20 | 19 | fmpt 5522 | . 2 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ ran {𝑥} ∈ 𝐵 ↔ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵) |
21 | 13, 20 | mpbi 144 | 1 ⊢ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1312 ∈ wcel 1461 ∀wral 2388 Vcvv 2655 ⊆ wss 3035 {csn 3491 〈cop 3494 ∪ cuni 3700 ↦ cmpt 3947 × cxp 4495 ran crn 4498 ↾ cres 4499 ⟶wf 5075 2nd c2nd 5989 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-rab 2397 df-v 2657 df-sbc 2877 df-csb 2970 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-iun 3779 df-br 3894 df-opab 3948 df-mpt 3949 df-id 4173 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-fv 5087 df-2nd 5991 |
This theorem is referenced by: fo2ndresm 6012 2ndcof 6014 f2ndf 6075 eucalgcvga 11579 tx2cn 12275 |
Copyright terms: Public domain | W3C validator |