ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f2ndres GIF version

Theorem f2ndres 6051
Description: Mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
f2ndres (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵

Proof of Theorem f2ndres
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2684 . . . . . . . 8 𝑦 ∈ V
2 vex 2684 . . . . . . . 8 𝑧 ∈ V
31, 2op2nda 5018 . . . . . . 7 ran {⟨𝑦, 𝑧⟩} = 𝑧
43eleq1i 2203 . . . . . 6 ( ran {⟨𝑦, 𝑧⟩} ∈ 𝐵𝑧𝐵)
54biimpri 132 . . . . 5 (𝑧𝐵 ran {⟨𝑦, 𝑧⟩} ∈ 𝐵)
65adantl 275 . . . 4 ((𝑦𝐴𝑧𝐵) → ran {⟨𝑦, 𝑧⟩} ∈ 𝐵)
76rgen2 2516 . . 3 𝑦𝐴𝑧𝐵 ran {⟨𝑦, 𝑧⟩} ∈ 𝐵
8 sneq 3533 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → {𝑥} = {⟨𝑦, 𝑧⟩})
98rneqd 4763 . . . . . 6 (𝑥 = ⟨𝑦, 𝑧⟩ → ran {𝑥} = ran {⟨𝑦, 𝑧⟩})
109unieqd 3742 . . . . 5 (𝑥 = ⟨𝑦, 𝑧⟩ → ran {𝑥} = ran {⟨𝑦, 𝑧⟩})
1110eleq1d 2206 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → ( ran {𝑥} ∈ 𝐵 ran {⟨𝑦, 𝑧⟩} ∈ 𝐵))
1211ralxp 4677 . . 3 (∀𝑥 ∈ (𝐴 × 𝐵) ran {𝑥} ∈ 𝐵 ↔ ∀𝑦𝐴𝑧𝐵 ran {⟨𝑦, 𝑧⟩} ∈ 𝐵)
137, 12mpbir 145 . 2 𝑥 ∈ (𝐴 × 𝐵) ran {𝑥} ∈ 𝐵
14 df-2nd 6032 . . . . 5 2nd = (𝑥 ∈ V ↦ ran {𝑥})
1514reseq1i 4810 . . . 4 (2nd ↾ (𝐴 × 𝐵)) = ((𝑥 ∈ V ↦ ran {𝑥}) ↾ (𝐴 × 𝐵))
16 ssv 3114 . . . . 5 (𝐴 × 𝐵) ⊆ V
17 resmpt 4862 . . . . 5 ((𝐴 × 𝐵) ⊆ V → ((𝑥 ∈ V ↦ ran {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ran {𝑥}))
1816, 17ax-mp 5 . . . 4 ((𝑥 ∈ V ↦ ran {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ran {𝑥})
1915, 18eqtri 2158 . . 3 (2nd ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ran {𝑥})
2019fmpt 5563 . 2 (∀𝑥 ∈ (𝐴 × 𝐵) ran {𝑥} ∈ 𝐵 ↔ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵)
2113, 20mpbi 144 1 (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1331  wcel 1480  wral 2414  Vcvv 2681  wss 3066  {csn 3522  cop 3525   cuni 3731  cmpt 3984   × cxp 4532  ran crn 4535  cres 4536  wf 5114  2nd c2nd 6030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-2nd 6032
This theorem is referenced by:  fo2ndresm  6053  2ndcof  6055  f2ndf  6116  eucalgcvga  11728  tx2cn  12428
  Copyright terms: Public domain W3C validator