Step | Hyp | Ref
| Expression |
1 | | relxp 4713 |
. . 3
⊢ Rel
(𝑋 × 𝑌) |
2 | | txuni2.1 |
. . . . . . . 8
⊢ 𝑋 = ∪
𝑅 |
3 | 2 | eleq2i 2233 |
. . . . . . 7
⊢ (𝑧 ∈ 𝑋 ↔ 𝑧 ∈ ∪ 𝑅) |
4 | | eluni2 3793 |
. . . . . . 7
⊢ (𝑧 ∈ ∪ 𝑅
↔ ∃𝑟 ∈
𝑅 𝑧 ∈ 𝑟) |
5 | 3, 4 | bitri 183 |
. . . . . 6
⊢ (𝑧 ∈ 𝑋 ↔ ∃𝑟 ∈ 𝑅 𝑧 ∈ 𝑟) |
6 | | txuni2.2 |
. . . . . . . 8
⊢ 𝑌 = ∪
𝑆 |
7 | 6 | eleq2i 2233 |
. . . . . . 7
⊢ (𝑤 ∈ 𝑌 ↔ 𝑤 ∈ ∪ 𝑆) |
8 | | eluni2 3793 |
. . . . . . 7
⊢ (𝑤 ∈ ∪ 𝑆
↔ ∃𝑠 ∈
𝑆 𝑤 ∈ 𝑠) |
9 | 7, 8 | bitri 183 |
. . . . . 6
⊢ (𝑤 ∈ 𝑌 ↔ ∃𝑠 ∈ 𝑆 𝑤 ∈ 𝑠) |
10 | 5, 9 | anbi12i 456 |
. . . . 5
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑌) ↔ (∃𝑟 ∈ 𝑅 𝑧 ∈ 𝑟 ∧ ∃𝑠 ∈ 𝑆 𝑤 ∈ 𝑠)) |
11 | | opelxp 4634 |
. . . . 5
⊢
(〈𝑧, 𝑤〉 ∈ (𝑋 × 𝑌) ↔ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑌)) |
12 | | reeanv 2635 |
. . . . 5
⊢
(∃𝑟 ∈
𝑅 ∃𝑠 ∈ 𝑆 (𝑧 ∈ 𝑟 ∧ 𝑤 ∈ 𝑠) ↔ (∃𝑟 ∈ 𝑅 𝑧 ∈ 𝑟 ∧ ∃𝑠 ∈ 𝑆 𝑤 ∈ 𝑠)) |
13 | 10, 11, 12 | 3bitr4i 211 |
. . . 4
⊢
(〈𝑧, 𝑤〉 ∈ (𝑋 × 𝑌) ↔ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑧 ∈ 𝑟 ∧ 𝑤 ∈ 𝑠)) |
14 | | opelxp 4634 |
. . . . . 6
⊢
(〈𝑧, 𝑤〉 ∈ (𝑟 × 𝑠) ↔ (𝑧 ∈ 𝑟 ∧ 𝑤 ∈ 𝑠)) |
15 | | eqid 2165 |
. . . . . . . . . 10
⊢ (𝑟 × 𝑠) = (𝑟 × 𝑠) |
16 | | xpeq1 4618 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑟 → (𝑥 × 𝑦) = (𝑟 × 𝑦)) |
17 | 16 | eqeq2d 2177 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑟 → ((𝑟 × 𝑠) = (𝑥 × 𝑦) ↔ (𝑟 × 𝑠) = (𝑟 × 𝑦))) |
18 | | xpeq2 4619 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑠 → (𝑟 × 𝑦) = (𝑟 × 𝑠)) |
19 | 18 | eqeq2d 2177 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑠 → ((𝑟 × 𝑠) = (𝑟 × 𝑦) ↔ (𝑟 × 𝑠) = (𝑟 × 𝑠))) |
20 | 17, 19 | rspc2ev 2845 |
. . . . . . . . . 10
⊢ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ∧ (𝑟 × 𝑠) = (𝑟 × 𝑠)) → ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 (𝑟 × 𝑠) = (𝑥 × 𝑦)) |
21 | 15, 20 | mp3an3 1316 |
. . . . . . . . 9
⊢ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) → ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 (𝑟 × 𝑠) = (𝑥 × 𝑦)) |
22 | | vex 2729 |
. . . . . . . . . . 11
⊢ 𝑟 ∈ V |
23 | | vex 2729 |
. . . . . . . . . . 11
⊢ 𝑠 ∈ V |
24 | 22, 23 | xpex 4719 |
. . . . . . . . . 10
⊢ (𝑟 × 𝑠) ∈ V |
25 | | eqeq1 2172 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑟 × 𝑠) → (𝑧 = (𝑥 × 𝑦) ↔ (𝑟 × 𝑠) = (𝑥 × 𝑦))) |
26 | 25 | 2rexbidv 2491 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑟 × 𝑠) → (∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 𝑧 = (𝑥 × 𝑦) ↔ ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 (𝑟 × 𝑠) = (𝑥 × 𝑦))) |
27 | | txval.1 |
. . . . . . . . . . 11
⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) |
28 | | eqid 2165 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) = (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) |
29 | 28 | rnmpo 5952 |
. . . . . . . . . . 11
⊢ ran
(𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) = {𝑧 ∣ ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 𝑧 = (𝑥 × 𝑦)} |
30 | 27, 29 | eqtri 2186 |
. . . . . . . . . 10
⊢ 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 𝑧 = (𝑥 × 𝑦)} |
31 | 24, 26, 30 | elab2 2874 |
. . . . . . . . 9
⊢ ((𝑟 × 𝑠) ∈ 𝐵 ↔ ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 (𝑟 × 𝑠) = (𝑥 × 𝑦)) |
32 | 21, 31 | sylibr 133 |
. . . . . . . 8
⊢ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) → (𝑟 × 𝑠) ∈ 𝐵) |
33 | | elssuni 3817 |
. . . . . . . 8
⊢ ((𝑟 × 𝑠) ∈ 𝐵 → (𝑟 × 𝑠) ⊆ ∪ 𝐵) |
34 | 32, 33 | syl 14 |
. . . . . . 7
⊢ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) → (𝑟 × 𝑠) ⊆ ∪ 𝐵) |
35 | 34 | sseld 3141 |
. . . . . 6
⊢ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) → (〈𝑧, 𝑤〉 ∈ (𝑟 × 𝑠) → 〈𝑧, 𝑤〉 ∈ ∪
𝐵)) |
36 | 14, 35 | syl5bir 152 |
. . . . 5
⊢ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) → ((𝑧 ∈ 𝑟 ∧ 𝑤 ∈ 𝑠) → 〈𝑧, 𝑤〉 ∈ ∪
𝐵)) |
37 | 36 | rexlimivv 2589 |
. . . 4
⊢
(∃𝑟 ∈
𝑅 ∃𝑠 ∈ 𝑆 (𝑧 ∈ 𝑟 ∧ 𝑤 ∈ 𝑠) → 〈𝑧, 𝑤〉 ∈ ∪
𝐵) |
38 | 13, 37 | sylbi 120 |
. . 3
⊢
(〈𝑧, 𝑤〉 ∈ (𝑋 × 𝑌) → 〈𝑧, 𝑤〉 ∈ ∪
𝐵) |
39 | 1, 38 | relssi 4695 |
. 2
⊢ (𝑋 × 𝑌) ⊆ ∪ 𝐵 |
40 | | elssuni 3817 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑅 → 𝑥 ⊆ ∪ 𝑅) |
41 | 40, 2 | sseqtrrdi 3191 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑅 → 𝑥 ⊆ 𝑋) |
42 | | elssuni 3817 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑆 → 𝑦 ⊆ ∪ 𝑆) |
43 | 42, 6 | sseqtrrdi 3191 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑆 → 𝑦 ⊆ 𝑌) |
44 | | xpss12 4711 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌) → (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌)) |
45 | 41, 43, 44 | syl2an 287 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌)) |
46 | | vex 2729 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
47 | | vex 2729 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
48 | 46, 47 | xpex 4719 |
. . . . . . . . 9
⊢ (𝑥 × 𝑦) ∈ V |
49 | 48 | elpw 3565 |
. . . . . . . 8
⊢ ((𝑥 × 𝑦) ∈ 𝒫 (𝑋 × 𝑌) ↔ (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌)) |
50 | 45, 49 | sylibr 133 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → (𝑥 × 𝑦) ∈ 𝒫 (𝑋 × 𝑌)) |
51 | 50 | rgen2 2552 |
. . . . . 6
⊢
∀𝑥 ∈
𝑅 ∀𝑦 ∈ 𝑆 (𝑥 × 𝑦) ∈ 𝒫 (𝑋 × 𝑌) |
52 | 28 | fmpo 6169 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑅 ∀𝑦 ∈ 𝑆 (𝑥 × 𝑦) ∈ 𝒫 (𝑋 × 𝑌) ↔ (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)):(𝑅 × 𝑆)⟶𝒫 (𝑋 × 𝑌)) |
53 | 51, 52 | mpbi 144 |
. . . . 5
⊢ (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)):(𝑅 × 𝑆)⟶𝒫 (𝑋 × 𝑌) |
54 | | frn 5346 |
. . . . 5
⊢ ((𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)):(𝑅 × 𝑆)⟶𝒫 (𝑋 × 𝑌) → ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (𝑋 × 𝑌)) |
55 | 53, 54 | ax-mp 5 |
. . . 4
⊢ ran
(𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (𝑋 × 𝑌) |
56 | 27, 55 | eqsstri 3174 |
. . 3
⊢ 𝐵 ⊆ 𝒫 (𝑋 × 𝑌) |
57 | | sspwuni 3950 |
. . 3
⊢ (𝐵 ⊆ 𝒫 (𝑋 × 𝑌) ↔ ∪ 𝐵 ⊆ (𝑋 × 𝑌)) |
58 | 56, 57 | mpbi 144 |
. 2
⊢ ∪ 𝐵
⊆ (𝑋 × 𝑌) |
59 | 39, 58 | eqssi 3158 |
1
⊢ (𝑋 × 𝑌) = ∪ 𝐵 |