| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnsubmlem | GIF version | ||
| Description: Lemma for nn0subm 14139 and friends. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| Ref | Expression |
|---|---|
| cnsubglem.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) |
| cnsubglem.2 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) |
| cnsubmlem.3 | ⊢ 0 ∈ 𝐴 |
| Ref | Expression |
|---|---|
| cnsubmlem | ⊢ 𝐴 ∈ (SubMnd‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnsubglem.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) | |
| 2 | 1 | ssriv 3187 | . 2 ⊢ 𝐴 ⊆ ℂ |
| 3 | cnsubmlem.3 | . 2 ⊢ 0 ∈ 𝐴 | |
| 4 | cnsubglem.2 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) | |
| 5 | 4 | rgen2 2583 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴 |
| 6 | cnring 14126 | . . 3 ⊢ ℂfld ∈ Ring | |
| 7 | ringmnd 13562 | . . 3 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Mnd) | |
| 8 | cnfldbas 14116 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
| 9 | cnfld0 14127 | . . . 4 ⊢ 0 = (0g‘ℂfld) | |
| 10 | cnfldadd 14118 | . . . 4 ⊢ + = (+g‘ℂfld) | |
| 11 | 8, 9, 10 | issubm 13104 | . . 3 ⊢ (ℂfld ∈ Mnd → (𝐴 ∈ (SubMnd‘ℂfld) ↔ (𝐴 ⊆ ℂ ∧ 0 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴))) |
| 12 | 6, 7, 11 | mp2b 8 | . 2 ⊢ (𝐴 ∈ (SubMnd‘ℂfld) ↔ (𝐴 ⊆ ℂ ∧ 0 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴)) |
| 13 | 2, 3, 5, 12 | mpbir3an 1181 | 1 ⊢ 𝐴 ∈ (SubMnd‘ℂfld) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 ‘cfv 5258 (class class class)co 5922 ℂcc 7877 0cc0 7879 + caddc 7882 Mndcmnd 13057 SubMndcsubmnd 13090 Ringcrg 13552 ℂfldccnfld 14112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-addf 8001 ax-mulf 8002 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-z 9327 df-dec 9458 df-uz 9602 df-rp 9729 df-fz 10084 df-cj 11007 df-abs 11164 df-struct 12680 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-plusg 12768 df-mulr 12769 df-starv 12770 df-tset 12774 df-ple 12775 df-ds 12777 df-unif 12778 df-0g 12929 df-topgen 12931 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-submnd 13092 df-grp 13135 df-cmn 13416 df-mgp 13477 df-ring 13554 df-cring 13555 df-bl 14102 df-mopn 14103 df-fg 14105 df-metu 14106 df-cnfld 14113 |
| This theorem is referenced by: nn0subm 14139 rege0subm 14140 |
| Copyright terms: Public domain | W3C validator |