| Step | Hyp | Ref
 | Expression | 
| 1 |   | breq1 4036 | 
. . . . 5
⊢ (𝑥 = 𝑧 → (𝑥 # 0 ↔ 𝑧 # 0)) | 
| 2 | 1 | elrab 2920 | 
. . . 4
⊢ (𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑧 ∈ ℂ ∧ 𝑧 # 0)) | 
| 3 |   | divrecap 8715 | 
. . . . 5
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 0) → (𝑦 / 𝑧) = (𝑦 · (1 / 𝑧))) | 
| 4 | 3 | 3expb 1206 | 
. . . 4
⊢ ((𝑦 ∈ ℂ ∧ (𝑧 ∈ ℂ ∧ 𝑧 # 0)) → (𝑦 / 𝑧) = (𝑦 · (1 / 𝑧))) | 
| 5 | 2, 4 | sylan2b 287 | 
. . 3
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (𝑦 / 𝑧) = (𝑦 · (1 / 𝑧))) | 
| 6 | 5 | mpoeq3ia 5987 | 
. 2
⊢ (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 / 𝑧)) = (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 · (1 / 𝑧))) | 
| 7 |   | addcncntop.j | 
. . . . . 6
⊢ 𝐽 = (MetOpen‘(abs ∘
− )) | 
| 8 | 7 | cntoptopon 14768 | 
. . . . 5
⊢ 𝐽 ∈
(TopOn‘ℂ) | 
| 9 | 8 | a1i 9 | 
. . . 4
⊢ (⊤
→ 𝐽 ∈
(TopOn‘ℂ)) | 
| 10 |   | divcnap.k | 
. . . . 5
⊢ 𝐾 = (𝐽 ↾t {𝑥 ∈ ℂ ∣ 𝑥 # 0}) | 
| 11 |   | ssrab2 3268 | 
. . . . . 6
⊢ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ⊆
ℂ | 
| 12 |   | resttopon 14407 | 
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘ℂ)
∧ {𝑥 ∈ ℂ
∣ 𝑥 # 0} ⊆
ℂ) → (𝐽
↾t {𝑥
∈ ℂ ∣ 𝑥 #
0}) ∈ (TopOn‘{𝑥
∈ ℂ ∣ 𝑥 #
0})) | 
| 13 | 9, 11, 12 | sylancl 413 | 
. . . . 5
⊢ (⊤
→ (𝐽
↾t {𝑥
∈ ℂ ∣ 𝑥 #
0}) ∈ (TopOn‘{𝑥
∈ ℂ ∣ 𝑥 #
0})) | 
| 14 | 10, 13 | eqeltrid 2283 | 
. . . 4
⊢ (⊤
→ 𝐾 ∈
(TopOn‘{𝑥 ∈
ℂ ∣ 𝑥 #
0})) | 
| 15 | 9, 14 | cnmpt1st 14524 | 
. . . 4
⊢ (⊤
→ (𝑦 ∈ ℂ,
𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) | 
| 16 | 9, 14 | cnmpt2nd 14525 | 
. . . . 5
⊢ (⊤
→ (𝑦 ∈ ℂ,
𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ 𝑧) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) | 
| 17 |   | eqid 2196 | 
. . . . . . . 8
⊢ (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) = (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) | 
| 18 |   | breq1 4036 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑞 → (𝑥 # 0 ↔ 𝑞 # 0)) | 
| 19 | 18 | elrab 2920 | 
. . . . . . . . 9
⊢ (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑞 ∈ ℂ ∧ 𝑞 # 0)) | 
| 20 |   | recclap 8706 | 
. . . . . . . . 9
⊢ ((𝑞 ∈ ℂ ∧ 𝑞 # 0) → (1 / 𝑞) ∈
ℂ) | 
| 21 | 19, 20 | sylbi 121 | 
. . . . . . . 8
⊢ (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (1 / 𝑞) ∈ ℂ) | 
| 22 | 17, 21 | fmpti 5714 | 
. . . . . . 7
⊢ (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)):{𝑥 ∈ ℂ ∣ 𝑥 # 0}⟶ℂ | 
| 23 |   | breq1 4036 | 
. . . . . . . . . . 11
⊢ (𝑥 = 𝑎 → (𝑥 # 0 ↔ 𝑎 # 0)) | 
| 24 | 23 | elrab 2920 | 
. . . . . . . . . 10
⊢ (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑎 ∈ ℂ ∧ 𝑎 # 0)) | 
| 25 |   | eqid 2196 | 
. . . . . . . . . . . 12
⊢ (inf({1,
((abs‘𝑎) ·
𝑏)}, ℝ, < )
· ((abs‘𝑎) /
2)) = (inf({1, ((abs‘𝑎) · 𝑏)}, ℝ, < ) ·
((abs‘𝑎) /
2)) | 
| 26 | 25 | reccn2ap 11478 | 
. . . . . . . . . . 11
⊢ ((𝑎 ∈ ℂ ∧ 𝑎 # 0 ∧ 𝑏 ∈ ℝ+) →
∃𝑢 ∈
ℝ+ ∀𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤 − 𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏)) | 
| 27 | 26 | 3expa 1205 | 
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℂ ∧ 𝑎 # 0) ∧ 𝑏 ∈ ℝ+) →
∃𝑢 ∈
ℝ+ ∀𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤 − 𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏)) | 
| 28 | 24, 27 | sylanb 284 | 
. . . . . . . . 9
⊢ ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑏 ∈ ℝ+) →
∃𝑢 ∈
ℝ+ ∀𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤 − 𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏)) | 
| 29 |   | ovres 6063 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) = (𝑎(abs ∘ − )𝑤)) | 
| 30 |   | elrabi 2917 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → 𝑎 ∈ ℂ) | 
| 31 |   | elrabi 2917 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → 𝑤 ∈ ℂ) | 
| 32 |   | eqid 2196 | 
. . . . . . . . . . . . . . . . . 18
⊢ (abs
∘ − ) = (abs ∘ − ) | 
| 33 | 32 | cnmetdval 14765 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑎(abs ∘ − )𝑤) = (abs‘(𝑎 − 𝑤))) | 
| 34 |   | abssub 11266 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 ∈ ℂ ∧ 𝑤 ∈ ℂ) →
(abs‘(𝑎 − 𝑤)) = (abs‘(𝑤 − 𝑎))) | 
| 35 | 33, 34 | eqtrd 2229 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑎(abs ∘ − )𝑤) = (abs‘(𝑤 − 𝑎))) | 
| 36 | 30, 31, 35 | syl2an 289 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (𝑎(abs ∘ − )𝑤) = (abs‘(𝑤 − 𝑎))) | 
| 37 | 29, 36 | eqtrd 2229 | 
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) = (abs‘(𝑤 − 𝑎))) | 
| 38 | 37 | breq1d 4043 | 
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 ↔ (abs‘(𝑤 − 𝑎)) < 𝑢)) | 
| 39 | 24 | simprbi 275 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → 𝑎 # 0) | 
| 40 | 30, 39 | recclapd 8808 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (1 / 𝑎) ∈ ℂ) | 
| 41 |   | oveq2 5930 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑞 = 𝑎 → (1 / 𝑞) = (1 / 𝑎)) | 
| 42 | 41, 17 | fvmptg 5637 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ (1 / 𝑎) ∈ ℂ) → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎) = (1 / 𝑎)) | 
| 43 | 40, 42 | mpdan 421 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎) = (1 / 𝑎)) | 
| 44 |   | breq1 4036 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑤 → (𝑥 # 0 ↔ 𝑤 # 0)) | 
| 45 | 44 | elrab 2920 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) | 
| 46 | 45 | simprbi 275 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → 𝑤 # 0) | 
| 47 | 31, 46 | recclapd 8808 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (1 / 𝑤) ∈ ℂ) | 
| 48 |   | oveq2 5930 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑞 = 𝑤 → (1 / 𝑞) = (1 / 𝑤)) | 
| 49 | 48, 17 | fvmptg 5637 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ (1 / 𝑤) ∈ ℂ) → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤) = (1 / 𝑤)) | 
| 50 | 47, 49 | mpdan 421 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤) = (1 / 𝑤)) | 
| 51 | 43, 50 | oveqan12d 5941 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) = ((1 / 𝑎)(abs ∘ − )(1 / 𝑤))) | 
| 52 | 32 | cnmetdval 14765 | 
. . . . . . . . . . . . . . . . 17
⊢ (((1 /
𝑎) ∈ ℂ ∧ (1
/ 𝑤) ∈ ℂ) →
((1 / 𝑎)(abs ∘
− )(1 / 𝑤)) =
(abs‘((1 / 𝑎) −
(1 / 𝑤)))) | 
| 53 |   | abssub 11266 | 
. . . . . . . . . . . . . . . . 17
⊢ (((1 /
𝑎) ∈ ℂ ∧ (1
/ 𝑤) ∈ ℂ) →
(abs‘((1 / 𝑎) −
(1 / 𝑤))) = (abs‘((1
/ 𝑤) − (1 / 𝑎)))) | 
| 54 | 52, 53 | eqtrd 2229 | 
. . . . . . . . . . . . . . . 16
⊢ (((1 /
𝑎) ∈ ℂ ∧ (1
/ 𝑤) ∈ ℂ) →
((1 / 𝑎)(abs ∘
− )(1 / 𝑤)) =
(abs‘((1 / 𝑤) −
(1 / 𝑎)))) | 
| 55 | 40, 47, 54 | syl2an 289 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → ((1 / 𝑎)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑎)))) | 
| 56 | 51, 55 | eqtrd 2229 | 
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑎)))) | 
| 57 | 56 | breq1d 4043 | 
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → ((((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏 ↔ (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏)) | 
| 58 | 38, 57 | imbi12d 234 | 
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏) ↔ ((abs‘(𝑤 − 𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏))) | 
| 59 | 58 | ralbidva 2493 | 
. . . . . . . . . . 11
⊢ (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (∀𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏) ↔ ∀𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤 − 𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏))) | 
| 60 | 59 | rexbidv 2498 | 
. . . . . . . . . 10
⊢ (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (∃𝑢 ∈ ℝ+ ∀𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏) ↔ ∃𝑢 ∈ ℝ+ ∀𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤 − 𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏))) | 
| 61 | 60 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑏 ∈ ℝ+) →
(∃𝑢 ∈
ℝ+ ∀𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏) ↔ ∃𝑢 ∈ ℝ+ ∀𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤 − 𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏))) | 
| 62 | 28, 61 | mpbird 167 | 
. . . . . . . 8
⊢ ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑏 ∈ ℝ+) →
∃𝑢 ∈
ℝ+ ∀𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏)) | 
| 63 | 62 | rgen2 2583 | 
. . . . . . 7
⊢
∀𝑎 ∈
{𝑥 ∈ ℂ ∣
𝑥 # 0}∀𝑏 ∈ ℝ+
∃𝑢 ∈
ℝ+ ∀𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏) | 
| 64 |   | cnxmet 14767 | 
. . . . . . . . 9
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) | 
| 65 |   | xmetres2 14615 | 
. . . . . . . . 9
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ⊆ ℂ) → ((abs ∘
− ) ↾ ({𝑥
∈ ℂ ∣ 𝑥 #
0} × {𝑥 ∈
ℂ ∣ 𝑥 # 0}))
∈ (∞Met‘{𝑥
∈ ℂ ∣ 𝑥 #
0})) | 
| 66 | 64, 11, 65 | mp2an 426 | 
. . . . . . . 8
⊢ ((abs
∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})) ∈ (∞Met‘{𝑥 ∈ ℂ ∣ 𝑥 # 0}) | 
| 67 |   | eqid 2196 | 
. . . . . . . . . . . 12
⊢ ((abs
∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})) = ((abs ∘ − ) ↾
({𝑥 ∈ ℂ ∣
𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})) | 
| 68 |   | eqid 2196 | 
. . . . . . . . . . . 12
⊢
(MetOpen‘((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))) = (MetOpen‘((abs ∘
− ) ↾ ({𝑥
∈ ℂ ∣ 𝑥 #
0} × {𝑥 ∈
ℂ ∣ 𝑥 #
0}))) | 
| 69 | 67, 7, 68 | metrest 14742 | 
. . . . . . . . . . 11
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ⊆ ℂ) → (𝐽 ↾t {𝑥 ∈ ℂ ∣ 𝑥 # 0}) = (MetOpen‘((abs
∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})))) | 
| 70 | 64, 11, 69 | mp2an 426 | 
. . . . . . . . . 10
⊢ (𝐽 ↾t {𝑥 ∈ ℂ ∣ 𝑥 # 0}) = (MetOpen‘((abs
∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))) | 
| 71 | 10, 70 | eqtri 2217 | 
. . . . . . . . 9
⊢ 𝐾 = (MetOpen‘((abs ∘
− ) ↾ ({𝑥
∈ ℂ ∣ 𝑥 #
0} × {𝑥 ∈
ℂ ∣ 𝑥 #
0}))) | 
| 72 | 71, 7 | metcn 14750 | 
. . . . . . . 8
⊢ ((((abs
∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})) ∈ (∞Met‘{𝑥 ∈ ℂ ∣ 𝑥 # 0}) ∧ (abs ∘
− ) ∈ (∞Met‘ℂ)) → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) ∈ (𝐾 Cn 𝐽) ↔ ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)):{𝑥 ∈ ℂ ∣ 𝑥 # 0}⟶ℂ ∧ ∀𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}∀𝑏 ∈ ℝ+ ∃𝑢 ∈ ℝ+
∀𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏)))) | 
| 73 | 66, 64, 72 | mp2an 426 | 
. . . . . . 7
⊢ ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) ∈ (𝐾 Cn 𝐽) ↔ ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)):{𝑥 ∈ ℂ ∣ 𝑥 # 0}⟶ℂ ∧ ∀𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}∀𝑏 ∈ ℝ+ ∃𝑢 ∈ ℝ+
∀𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏))) | 
| 74 | 22, 63, 73 | mpbir2an 944 | 
. . . . . 6
⊢ (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) ∈ (𝐾 Cn 𝐽) | 
| 75 | 74 | a1i 9 | 
. . . . 5
⊢ (⊤
→ (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) ∈ (𝐾 Cn 𝐽)) | 
| 76 |   | oveq2 5930 | 
. . . . 5
⊢ (𝑞 = 𝑧 → (1 / 𝑞) = (1 / 𝑧)) | 
| 77 | 9, 14, 16, 14, 75, 76 | cnmpt21 14527 | 
. . . 4
⊢ (⊤
→ (𝑦 ∈ ℂ,
𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑧)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) | 
| 78 | 7 | mulcncntop 14800 | 
. . . . 5
⊢  ·
∈ ((𝐽
×t 𝐽) Cn
𝐽) | 
| 79 | 78 | a1i 9 | 
. . . 4
⊢ (⊤
→ · ∈ ((𝐽
×t 𝐽) Cn
𝐽)) | 
| 80 | 9, 14, 15, 77, 79 | cnmpt22f 14531 | 
. . 3
⊢ (⊤
→ (𝑦 ∈ ℂ,
𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 · (1 / 𝑧))) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) | 
| 81 | 80 | mptru 1373 | 
. 2
⊢ (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 · (1 / 𝑧))) ∈ ((𝐽 ×t 𝐾) Cn 𝐽) | 
| 82 | 6, 81 | eqeltri 2269 | 
1
⊢ (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 / 𝑧)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽) |