ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divcnap GIF version

Theorem divcnap 12763
Description: Complex number division is a continuous function, when the second argument is apart from zero. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Jim Kingdon, 25-Oct-2023.)
Hypotheses
Ref Expression
addcncntop.j 𝐽 = (MetOpen‘(abs ∘ − ))
divcnap.k 𝐾 = (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0})
Assertion
Ref Expression
divcnap (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 / 𝑧)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐽   𝑥,𝐾,𝑦,𝑧

Proof of Theorem divcnap
Dummy variables 𝑎 𝑏 𝑢 𝑤 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3940 . . . . 5 (𝑥 = 𝑧 → (𝑥 # 0 ↔ 𝑧 # 0))
21elrab 2844 . . . 4 (𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑧 ∈ ℂ ∧ 𝑧 # 0))
3 divrecap 8472 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 0) → (𝑦 / 𝑧) = (𝑦 · (1 / 𝑧)))
433expb 1183 . . . 4 ((𝑦 ∈ ℂ ∧ (𝑧 ∈ ℂ ∧ 𝑧 # 0)) → (𝑦 / 𝑧) = (𝑦 · (1 / 𝑧)))
52, 4sylan2b 285 . . 3 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (𝑦 / 𝑧) = (𝑦 · (1 / 𝑧)))
65mpoeq3ia 5844 . 2 (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 / 𝑧)) = (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 · (1 / 𝑧)))
7 addcncntop.j . . . . . 6 𝐽 = (MetOpen‘(abs ∘ − ))
87cntoptopon 12740 . . . . 5 𝐽 ∈ (TopOn‘ℂ)
98a1i 9 . . . 4 (⊤ → 𝐽 ∈ (TopOn‘ℂ))
10 divcnap.k . . . . 5 𝐾 = (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0})
11 ssrab2 3187 . . . . . 6 {𝑥 ∈ ℂ ∣ 𝑥 # 0} ⊆ ℂ
12 resttopon 12379 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ⊆ ℂ) → (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0}) ∈ (TopOn‘{𝑥 ∈ ℂ ∣ 𝑥 # 0}))
139, 11, 12sylancl 410 . . . . 5 (⊤ → (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0}) ∈ (TopOn‘{𝑥 ∈ ℂ ∣ 𝑥 # 0}))
1410, 13eqeltrid 2227 . . . 4 (⊤ → 𝐾 ∈ (TopOn‘{𝑥 ∈ ℂ ∣ 𝑥 # 0}))
159, 14cnmpt1st 12496 . . . 4 (⊤ → (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
169, 14cnmpt2nd 12497 . . . . 5 (⊤ → (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ 𝑧) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
17 eqid 2140 . . . . . . . 8 (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) = (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))
18 breq1 3940 . . . . . . . . . 10 (𝑥 = 𝑞 → (𝑥 # 0 ↔ 𝑞 # 0))
1918elrab 2844 . . . . . . . . 9 (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑞 ∈ ℂ ∧ 𝑞 # 0))
20 recclap 8463 . . . . . . . . 9 ((𝑞 ∈ ℂ ∧ 𝑞 # 0) → (1 / 𝑞) ∈ ℂ)
2119, 20sylbi 120 . . . . . . . 8 (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (1 / 𝑞) ∈ ℂ)
2217, 21fmpti 5580 . . . . . . 7 (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)):{𝑥 ∈ ℂ ∣ 𝑥 # 0}⟶ℂ
23 breq1 3940 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑥 # 0 ↔ 𝑎 # 0))
2423elrab 2844 . . . . . . . . . 10 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑎 ∈ ℂ ∧ 𝑎 # 0))
25 eqid 2140 . . . . . . . . . . . 12 (inf({1, ((abs‘𝑎) · 𝑏)}, ℝ, < ) · ((abs‘𝑎) / 2)) = (inf({1, ((abs‘𝑎) · 𝑏)}, ℝ, < ) · ((abs‘𝑎) / 2))
2625reccn2ap 11114 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑎 # 0 ∧ 𝑏 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏))
27263expa 1182 . . . . . . . . . 10 (((𝑎 ∈ ℂ ∧ 𝑎 # 0) ∧ 𝑏 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏))
2824, 27sylanb 282 . . . . . . . . 9 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑏 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏))
29 ovres 5918 . . . . . . . . . . . . . . 15 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) = (𝑎(abs ∘ − )𝑤))
30 elrabi 2841 . . . . . . . . . . . . . . . 16 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → 𝑎 ∈ ℂ)
31 elrabi 2841 . . . . . . . . . . . . . . . 16 (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → 𝑤 ∈ ℂ)
32 eqid 2140 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ) = (abs ∘ − )
3332cnmetdval 12737 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑎(abs ∘ − )𝑤) = (abs‘(𝑎𝑤)))
34 abssub 10905 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (abs‘(𝑎𝑤)) = (abs‘(𝑤𝑎)))
3533, 34eqtrd 2173 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑎(abs ∘ − )𝑤) = (abs‘(𝑤𝑎)))
3630, 31, 35syl2an 287 . . . . . . . . . . . . . . 15 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (𝑎(abs ∘ − )𝑤) = (abs‘(𝑤𝑎)))
3729, 36eqtrd 2173 . . . . . . . . . . . . . 14 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) = (abs‘(𝑤𝑎)))
3837breq1d 3947 . . . . . . . . . . . . 13 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 ↔ (abs‘(𝑤𝑎)) < 𝑢))
3924simprbi 273 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → 𝑎 # 0)
4030, 39recclapd 8565 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (1 / 𝑎) ∈ ℂ)
41 oveq2 5790 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑎 → (1 / 𝑞) = (1 / 𝑎))
4241, 17fvmptg 5505 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ (1 / 𝑎) ∈ ℂ) → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎) = (1 / 𝑎))
4340, 42mpdan 418 . . . . . . . . . . . . . . . 16 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎) = (1 / 𝑎))
44 breq1 3940 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → (𝑥 # 0 ↔ 𝑤 # 0))
4544elrab 2844 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑤 ∈ ℂ ∧ 𝑤 # 0))
4645simprbi 273 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → 𝑤 # 0)
4731, 46recclapd 8565 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (1 / 𝑤) ∈ ℂ)
48 oveq2 5790 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑤 → (1 / 𝑞) = (1 / 𝑤))
4948, 17fvmptg 5505 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ (1 / 𝑤) ∈ ℂ) → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤) = (1 / 𝑤))
5047, 49mpdan 418 . . . . . . . . . . . . . . . 16 (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤) = (1 / 𝑤))
5143, 50oveqan12d 5801 . . . . . . . . . . . . . . 15 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) = ((1 / 𝑎)(abs ∘ − )(1 / 𝑤)))
5232cnmetdval 12737 . . . . . . . . . . . . . . . . 17 (((1 / 𝑎) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → ((1 / 𝑎)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑎) − (1 / 𝑤))))
53 abssub 10905 . . . . . . . . . . . . . . . . 17 (((1 / 𝑎) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → (abs‘((1 / 𝑎) − (1 / 𝑤))) = (abs‘((1 / 𝑤) − (1 / 𝑎))))
5452, 53eqtrd 2173 . . . . . . . . . . . . . . . 16 (((1 / 𝑎) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → ((1 / 𝑎)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑎))))
5540, 47, 54syl2an 287 . . . . . . . . . . . . . . 15 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → ((1 / 𝑎)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑎))))
5651, 55eqtrd 2173 . . . . . . . . . . . . . 14 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑎))))
5756breq1d 3947 . . . . . . . . . . . . 13 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → ((((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏 ↔ (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏))
5838, 57imbi12d 233 . . . . . . . . . . . 12 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏) ↔ ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏)))
5958ralbidva 2434 . . . . . . . . . . 11 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (∀𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏) ↔ ∀𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏)))
6059rexbidv 2439 . . . . . . . . . 10 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏) ↔ ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏)))
6160adantr 274 . . . . . . . . 9 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑏 ∈ ℝ+) → (∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏) ↔ ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏)))
6228, 61mpbird 166 . . . . . . . 8 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑏 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏))
6362rgen2 2521 . . . . . . 7 𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}∀𝑏 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏)
64 cnxmet 12739 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
65 xmetres2 12587 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ⊆ ℂ) → ((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})) ∈ (∞Met‘{𝑥 ∈ ℂ ∣ 𝑥 # 0}))
6664, 11, 65mp2an 423 . . . . . . . 8 ((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})) ∈ (∞Met‘{𝑥 ∈ ℂ ∣ 𝑥 # 0})
67 eqid 2140 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})) = ((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))
68 eqid 2140 . . . . . . . . . . . 12 (MetOpen‘((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))) = (MetOpen‘((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})))
6967, 7, 68metrest 12714 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ⊆ ℂ) → (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0}) = (MetOpen‘((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))))
7064, 11, 69mp2an 423 . . . . . . . . . 10 (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0}) = (MetOpen‘((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})))
7110, 70eqtri 2161 . . . . . . . . 9 𝐾 = (MetOpen‘((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})))
7271, 7metcn 12722 . . . . . . . 8 ((((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})) ∈ (∞Met‘{𝑥 ∈ ℂ ∣ 𝑥 # 0}) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) ∈ (𝐾 Cn 𝐽) ↔ ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)):{𝑥 ∈ ℂ ∣ 𝑥 # 0}⟶ℂ ∧ ∀𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}∀𝑏 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏))))
7366, 64, 72mp2an 423 . . . . . . 7 ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) ∈ (𝐾 Cn 𝐽) ↔ ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)):{𝑥 ∈ ℂ ∣ 𝑥 # 0}⟶ℂ ∧ ∀𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}∀𝑏 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏)))
7422, 63, 73mpbir2an 927 . . . . . 6 (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) ∈ (𝐾 Cn 𝐽)
7574a1i 9 . . . . 5 (⊤ → (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) ∈ (𝐾 Cn 𝐽))
76 oveq2 5790 . . . . 5 (𝑞 = 𝑧 → (1 / 𝑞) = (1 / 𝑧))
779, 14, 16, 14, 75, 76cnmpt21 12499 . . . 4 (⊤ → (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑧)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
787mulcncntop 12762 . . . . 5 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
7978a1i 9 . . . 4 (⊤ → · ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
809, 14, 15, 77, 79cnmpt22f 12503 . . 3 (⊤ → (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 · (1 / 𝑧))) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
8180mptru 1341 . 2 (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 · (1 / 𝑧))) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
826, 81eqeltri 2213 1 (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 / 𝑧)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wtru 1333  wcel 1481  wral 2417  wrex 2418  {crab 2421  wss 3076  {cpr 3533   class class class wbr 3937  cmpt 3997   × cxp 4545  cres 4549  ccom 4551  wf 5127  cfv 5131  (class class class)co 5782  cmpo 5784  infcinf 6878  cc 7642  cr 7643  0cc0 7644  1c1 7645   · cmul 7649   < clt 7824  cmin 7957   # cap 8367   / cdiv 8456  2c2 8795  +crp 9470  abscabs 10801  t crest 12159  ∞Metcxmet 12188  MetOpencmopn 12193  TopOnctopon 12216   Cn ccn 12393   ×t ctx 12460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764  ax-mulf 7767
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-map 6552  df-sup 6879  df-inf 6880  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-xneg 9589  df-xadd 9590  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-rest 12161  df-topgen 12180  df-psmet 12195  df-xmet 12196  df-met 12197  df-bl 12198  df-mopn 12199  df-top 12204  df-topon 12217  df-bases 12249  df-cn 12396  df-cnp 12397  df-tx 12461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator