ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divcnap GIF version

Theorem divcnap 14723
Description: Complex number division is a continuous function, when the second argument is apart from zero. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Jim Kingdon, 25-Oct-2023.)
Hypotheses
Ref Expression
addcncntop.j 𝐽 = (MetOpen‘(abs ∘ − ))
divcnap.k 𝐾 = (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0})
Assertion
Ref Expression
divcnap (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 / 𝑧)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐽   𝑥,𝐾,𝑦,𝑧

Proof of Theorem divcnap
Dummy variables 𝑎 𝑏 𝑢 𝑤 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4032 . . . . 5 (𝑥 = 𝑧 → (𝑥 # 0 ↔ 𝑧 # 0))
21elrab 2916 . . . 4 (𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑧 ∈ ℂ ∧ 𝑧 # 0))
3 divrecap 8707 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 0) → (𝑦 / 𝑧) = (𝑦 · (1 / 𝑧)))
433expb 1206 . . . 4 ((𝑦 ∈ ℂ ∧ (𝑧 ∈ ℂ ∧ 𝑧 # 0)) → (𝑦 / 𝑧) = (𝑦 · (1 / 𝑧)))
52, 4sylan2b 287 . . 3 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (𝑦 / 𝑧) = (𝑦 · (1 / 𝑧)))
65mpoeq3ia 5983 . 2 (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 / 𝑧)) = (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 · (1 / 𝑧)))
7 addcncntop.j . . . . . 6 𝐽 = (MetOpen‘(abs ∘ − ))
87cntoptopon 14700 . . . . 5 𝐽 ∈ (TopOn‘ℂ)
98a1i 9 . . . 4 (⊤ → 𝐽 ∈ (TopOn‘ℂ))
10 divcnap.k . . . . 5 𝐾 = (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0})
11 ssrab2 3264 . . . . . 6 {𝑥 ∈ ℂ ∣ 𝑥 # 0} ⊆ ℂ
12 resttopon 14339 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ⊆ ℂ) → (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0}) ∈ (TopOn‘{𝑥 ∈ ℂ ∣ 𝑥 # 0}))
139, 11, 12sylancl 413 . . . . 5 (⊤ → (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0}) ∈ (TopOn‘{𝑥 ∈ ℂ ∣ 𝑥 # 0}))
1410, 13eqeltrid 2280 . . . 4 (⊤ → 𝐾 ∈ (TopOn‘{𝑥 ∈ ℂ ∣ 𝑥 # 0}))
159, 14cnmpt1st 14456 . . . 4 (⊤ → (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
169, 14cnmpt2nd 14457 . . . . 5 (⊤ → (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ 𝑧) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
17 eqid 2193 . . . . . . . 8 (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) = (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))
18 breq1 4032 . . . . . . . . . 10 (𝑥 = 𝑞 → (𝑥 # 0 ↔ 𝑞 # 0))
1918elrab 2916 . . . . . . . . 9 (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑞 ∈ ℂ ∧ 𝑞 # 0))
20 recclap 8698 . . . . . . . . 9 ((𝑞 ∈ ℂ ∧ 𝑞 # 0) → (1 / 𝑞) ∈ ℂ)
2119, 20sylbi 121 . . . . . . . 8 (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (1 / 𝑞) ∈ ℂ)
2217, 21fmpti 5710 . . . . . . 7 (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)):{𝑥 ∈ ℂ ∣ 𝑥 # 0}⟶ℂ
23 breq1 4032 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑥 # 0 ↔ 𝑎 # 0))
2423elrab 2916 . . . . . . . . . 10 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑎 ∈ ℂ ∧ 𝑎 # 0))
25 eqid 2193 . . . . . . . . . . . 12 (inf({1, ((abs‘𝑎) · 𝑏)}, ℝ, < ) · ((abs‘𝑎) / 2)) = (inf({1, ((abs‘𝑎) · 𝑏)}, ℝ, < ) · ((abs‘𝑎) / 2))
2625reccn2ap 11456 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑎 # 0 ∧ 𝑏 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏))
27263expa 1205 . . . . . . . . . 10 (((𝑎 ∈ ℂ ∧ 𝑎 # 0) ∧ 𝑏 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏))
2824, 27sylanb 284 . . . . . . . . 9 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑏 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏))
29 ovres 6058 . . . . . . . . . . . . . . 15 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) = (𝑎(abs ∘ − )𝑤))
30 elrabi 2913 . . . . . . . . . . . . . . . 16 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → 𝑎 ∈ ℂ)
31 elrabi 2913 . . . . . . . . . . . . . . . 16 (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → 𝑤 ∈ ℂ)
32 eqid 2193 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ) = (abs ∘ − )
3332cnmetdval 14697 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑎(abs ∘ − )𝑤) = (abs‘(𝑎𝑤)))
34 abssub 11245 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (abs‘(𝑎𝑤)) = (abs‘(𝑤𝑎)))
3533, 34eqtrd 2226 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑎(abs ∘ − )𝑤) = (abs‘(𝑤𝑎)))
3630, 31, 35syl2an 289 . . . . . . . . . . . . . . 15 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (𝑎(abs ∘ − )𝑤) = (abs‘(𝑤𝑎)))
3729, 36eqtrd 2226 . . . . . . . . . . . . . 14 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) = (abs‘(𝑤𝑎)))
3837breq1d 4039 . . . . . . . . . . . . 13 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 ↔ (abs‘(𝑤𝑎)) < 𝑢))
3924simprbi 275 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → 𝑎 # 0)
4030, 39recclapd 8800 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (1 / 𝑎) ∈ ℂ)
41 oveq2 5926 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑎 → (1 / 𝑞) = (1 / 𝑎))
4241, 17fvmptg 5633 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ (1 / 𝑎) ∈ ℂ) → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎) = (1 / 𝑎))
4340, 42mpdan 421 . . . . . . . . . . . . . . . 16 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎) = (1 / 𝑎))
44 breq1 4032 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → (𝑥 # 0 ↔ 𝑤 # 0))
4544elrab 2916 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑤 ∈ ℂ ∧ 𝑤 # 0))
4645simprbi 275 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → 𝑤 # 0)
4731, 46recclapd 8800 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (1 / 𝑤) ∈ ℂ)
48 oveq2 5926 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑤 → (1 / 𝑞) = (1 / 𝑤))
4948, 17fvmptg 5633 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ (1 / 𝑤) ∈ ℂ) → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤) = (1 / 𝑤))
5047, 49mpdan 421 . . . . . . . . . . . . . . . 16 (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤) = (1 / 𝑤))
5143, 50oveqan12d 5937 . . . . . . . . . . . . . . 15 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) = ((1 / 𝑎)(abs ∘ − )(1 / 𝑤)))
5232cnmetdval 14697 . . . . . . . . . . . . . . . . 17 (((1 / 𝑎) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → ((1 / 𝑎)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑎) − (1 / 𝑤))))
53 abssub 11245 . . . . . . . . . . . . . . . . 17 (((1 / 𝑎) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → (abs‘((1 / 𝑎) − (1 / 𝑤))) = (abs‘((1 / 𝑤) − (1 / 𝑎))))
5452, 53eqtrd 2226 . . . . . . . . . . . . . . . 16 (((1 / 𝑎) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → ((1 / 𝑎)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑎))))
5540, 47, 54syl2an 289 . . . . . . . . . . . . . . 15 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → ((1 / 𝑎)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑎))))
5651, 55eqtrd 2226 . . . . . . . . . . . . . 14 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑎))))
5756breq1d 4039 . . . . . . . . . . . . 13 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → ((((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏 ↔ (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏))
5838, 57imbi12d 234 . . . . . . . . . . . 12 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏) ↔ ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏)))
5958ralbidva 2490 . . . . . . . . . . 11 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (∀𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏) ↔ ∀𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏)))
6059rexbidv 2495 . . . . . . . . . 10 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏) ↔ ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏)))
6160adantr 276 . . . . . . . . 9 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑏 ∈ ℝ+) → (∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏) ↔ ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏)))
6228, 61mpbird 167 . . . . . . . 8 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑏 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏))
6362rgen2 2580 . . . . . . 7 𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}∀𝑏 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏)
64 cnxmet 14699 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
65 xmetres2 14547 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ⊆ ℂ) → ((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})) ∈ (∞Met‘{𝑥 ∈ ℂ ∣ 𝑥 # 0}))
6664, 11, 65mp2an 426 . . . . . . . 8 ((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})) ∈ (∞Met‘{𝑥 ∈ ℂ ∣ 𝑥 # 0})
67 eqid 2193 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})) = ((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))
68 eqid 2193 . . . . . . . . . . . 12 (MetOpen‘((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))) = (MetOpen‘((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})))
6967, 7, 68metrest 14674 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ⊆ ℂ) → (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0}) = (MetOpen‘((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))))
7064, 11, 69mp2an 426 . . . . . . . . . 10 (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0}) = (MetOpen‘((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})))
7110, 70eqtri 2214 . . . . . . . . 9 𝐾 = (MetOpen‘((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})))
7271, 7metcn 14682 . . . . . . . 8 ((((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})) ∈ (∞Met‘{𝑥 ∈ ℂ ∣ 𝑥 # 0}) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) ∈ (𝐾 Cn 𝐽) ↔ ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)):{𝑥 ∈ ℂ ∣ 𝑥 # 0}⟶ℂ ∧ ∀𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}∀𝑏 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏))))
7366, 64, 72mp2an 426 . . . . . . 7 ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) ∈ (𝐾 Cn 𝐽) ↔ ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)):{𝑥 ∈ ℂ ∣ 𝑥 # 0}⟶ℂ ∧ ∀𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}∀𝑏 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏)))
7422, 63, 73mpbir2an 944 . . . . . 6 (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) ∈ (𝐾 Cn 𝐽)
7574a1i 9 . . . . 5 (⊤ → (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) ∈ (𝐾 Cn 𝐽))
76 oveq2 5926 . . . . 5 (𝑞 = 𝑧 → (1 / 𝑞) = (1 / 𝑧))
779, 14, 16, 14, 75, 76cnmpt21 14459 . . . 4 (⊤ → (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑧)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
787mulcncntop 14722 . . . . 5 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
7978a1i 9 . . . 4 (⊤ → · ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
809, 14, 15, 77, 79cnmpt22f 14463 . . 3 (⊤ → (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 · (1 / 𝑧))) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
8180mptru 1373 . 2 (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 · (1 / 𝑧))) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
826, 81eqeltri 2266 1 (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 / 𝑧)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wtru 1365  wcel 2164  wral 2472  wrex 2473  {crab 2476  wss 3153  {cpr 3619   class class class wbr 4029  cmpt 4090   × cxp 4657  cres 4661  ccom 4663  wf 5250  cfv 5254  (class class class)co 5918  cmpo 5920  infcinf 7042  cc 7870  cr 7871  0cc0 7872  1c1 7873   · cmul 7877   < clt 8054  cmin 8190   # cap 8600   / cdiv 8691  2c2 9033  +crp 9719  abscabs 11141  t crest 12850  ∞Metcxmet 14032  MetOpencmopn 14037  TopOnctopon 14178   Cn ccn 14353   ×t ctx 14420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-map 6704  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-xneg 9838  df-xadd 9839  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-rest 12852  df-topgen 12871  df-psmet 14039  df-xmet 14040  df-met 14041  df-bl 14042  df-mopn 14043  df-top 14166  df-topon 14179  df-bases 14211  df-cn 14356  df-cnp 14357  df-tx 14421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator