ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divcnap GIF version

Theorem divcnap 14801
Description: Complex number division is a continuous function, when the second argument is apart from zero. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Jim Kingdon, 25-Oct-2023.)
Hypotheses
Ref Expression
addcncntop.j 𝐽 = (MetOpen‘(abs ∘ − ))
divcnap.k 𝐾 = (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0})
Assertion
Ref Expression
divcnap (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 / 𝑧)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐽   𝑥,𝐾,𝑦,𝑧

Proof of Theorem divcnap
Dummy variables 𝑎 𝑏 𝑢 𝑤 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4036 . . . . 5 (𝑥 = 𝑧 → (𝑥 # 0 ↔ 𝑧 # 0))
21elrab 2920 . . . 4 (𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑧 ∈ ℂ ∧ 𝑧 # 0))
3 divrecap 8715 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 0) → (𝑦 / 𝑧) = (𝑦 · (1 / 𝑧)))
433expb 1206 . . . 4 ((𝑦 ∈ ℂ ∧ (𝑧 ∈ ℂ ∧ 𝑧 # 0)) → (𝑦 / 𝑧) = (𝑦 · (1 / 𝑧)))
52, 4sylan2b 287 . . 3 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (𝑦 / 𝑧) = (𝑦 · (1 / 𝑧)))
65mpoeq3ia 5987 . 2 (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 / 𝑧)) = (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 · (1 / 𝑧)))
7 addcncntop.j . . . . . 6 𝐽 = (MetOpen‘(abs ∘ − ))
87cntoptopon 14768 . . . . 5 𝐽 ∈ (TopOn‘ℂ)
98a1i 9 . . . 4 (⊤ → 𝐽 ∈ (TopOn‘ℂ))
10 divcnap.k . . . . 5 𝐾 = (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0})
11 ssrab2 3268 . . . . . 6 {𝑥 ∈ ℂ ∣ 𝑥 # 0} ⊆ ℂ
12 resttopon 14407 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ⊆ ℂ) → (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0}) ∈ (TopOn‘{𝑥 ∈ ℂ ∣ 𝑥 # 0}))
139, 11, 12sylancl 413 . . . . 5 (⊤ → (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0}) ∈ (TopOn‘{𝑥 ∈ ℂ ∣ 𝑥 # 0}))
1410, 13eqeltrid 2283 . . . 4 (⊤ → 𝐾 ∈ (TopOn‘{𝑥 ∈ ℂ ∣ 𝑥 # 0}))
159, 14cnmpt1st 14524 . . . 4 (⊤ → (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
169, 14cnmpt2nd 14525 . . . . 5 (⊤ → (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ 𝑧) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
17 eqid 2196 . . . . . . . 8 (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) = (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))
18 breq1 4036 . . . . . . . . . 10 (𝑥 = 𝑞 → (𝑥 # 0 ↔ 𝑞 # 0))
1918elrab 2920 . . . . . . . . 9 (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑞 ∈ ℂ ∧ 𝑞 # 0))
20 recclap 8706 . . . . . . . . 9 ((𝑞 ∈ ℂ ∧ 𝑞 # 0) → (1 / 𝑞) ∈ ℂ)
2119, 20sylbi 121 . . . . . . . 8 (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (1 / 𝑞) ∈ ℂ)
2217, 21fmpti 5714 . . . . . . 7 (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)):{𝑥 ∈ ℂ ∣ 𝑥 # 0}⟶ℂ
23 breq1 4036 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑥 # 0 ↔ 𝑎 # 0))
2423elrab 2920 . . . . . . . . . 10 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑎 ∈ ℂ ∧ 𝑎 # 0))
25 eqid 2196 . . . . . . . . . . . 12 (inf({1, ((abs‘𝑎) · 𝑏)}, ℝ, < ) · ((abs‘𝑎) / 2)) = (inf({1, ((abs‘𝑎) · 𝑏)}, ℝ, < ) · ((abs‘𝑎) / 2))
2625reccn2ap 11478 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑎 # 0 ∧ 𝑏 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏))
27263expa 1205 . . . . . . . . . 10 (((𝑎 ∈ ℂ ∧ 𝑎 # 0) ∧ 𝑏 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏))
2824, 27sylanb 284 . . . . . . . . 9 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑏 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏))
29 ovres 6063 . . . . . . . . . . . . . . 15 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) = (𝑎(abs ∘ − )𝑤))
30 elrabi 2917 . . . . . . . . . . . . . . . 16 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → 𝑎 ∈ ℂ)
31 elrabi 2917 . . . . . . . . . . . . . . . 16 (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → 𝑤 ∈ ℂ)
32 eqid 2196 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ) = (abs ∘ − )
3332cnmetdval 14765 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑎(abs ∘ − )𝑤) = (abs‘(𝑎𝑤)))
34 abssub 11266 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (abs‘(𝑎𝑤)) = (abs‘(𝑤𝑎)))
3533, 34eqtrd 2229 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑎(abs ∘ − )𝑤) = (abs‘(𝑤𝑎)))
3630, 31, 35syl2an 289 . . . . . . . . . . . . . . 15 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (𝑎(abs ∘ − )𝑤) = (abs‘(𝑤𝑎)))
3729, 36eqtrd 2229 . . . . . . . . . . . . . 14 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) = (abs‘(𝑤𝑎)))
3837breq1d 4043 . . . . . . . . . . . . 13 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 ↔ (abs‘(𝑤𝑎)) < 𝑢))
3924simprbi 275 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → 𝑎 # 0)
4030, 39recclapd 8808 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (1 / 𝑎) ∈ ℂ)
41 oveq2 5930 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑎 → (1 / 𝑞) = (1 / 𝑎))
4241, 17fvmptg 5637 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ (1 / 𝑎) ∈ ℂ) → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎) = (1 / 𝑎))
4340, 42mpdan 421 . . . . . . . . . . . . . . . 16 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎) = (1 / 𝑎))
44 breq1 4036 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → (𝑥 # 0 ↔ 𝑤 # 0))
4544elrab 2920 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑤 ∈ ℂ ∧ 𝑤 # 0))
4645simprbi 275 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → 𝑤 # 0)
4731, 46recclapd 8808 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (1 / 𝑤) ∈ ℂ)
48 oveq2 5930 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑤 → (1 / 𝑞) = (1 / 𝑤))
4948, 17fvmptg 5637 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ (1 / 𝑤) ∈ ℂ) → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤) = (1 / 𝑤))
5047, 49mpdan 421 . . . . . . . . . . . . . . . 16 (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤) = (1 / 𝑤))
5143, 50oveqan12d 5941 . . . . . . . . . . . . . . 15 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) = ((1 / 𝑎)(abs ∘ − )(1 / 𝑤)))
5232cnmetdval 14765 . . . . . . . . . . . . . . . . 17 (((1 / 𝑎) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → ((1 / 𝑎)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑎) − (1 / 𝑤))))
53 abssub 11266 . . . . . . . . . . . . . . . . 17 (((1 / 𝑎) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → (abs‘((1 / 𝑎) − (1 / 𝑤))) = (abs‘((1 / 𝑤) − (1 / 𝑎))))
5452, 53eqtrd 2229 . . . . . . . . . . . . . . . 16 (((1 / 𝑎) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → ((1 / 𝑎)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑎))))
5540, 47, 54syl2an 289 . . . . . . . . . . . . . . 15 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → ((1 / 𝑎)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑎))))
5651, 55eqtrd 2229 . . . . . . . . . . . . . 14 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑎))))
5756breq1d 4043 . . . . . . . . . . . . 13 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → ((((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏 ↔ (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏))
5838, 57imbi12d 234 . . . . . . . . . . . 12 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏) ↔ ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏)))
5958ralbidva 2493 . . . . . . . . . . 11 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (∀𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏) ↔ ∀𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏)))
6059rexbidv 2498 . . . . . . . . . 10 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏) ↔ ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏)))
6160adantr 276 . . . . . . . . 9 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑏 ∈ ℝ+) → (∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏) ↔ ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏)))
6228, 61mpbird 167 . . . . . . . 8 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑏 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏))
6362rgen2 2583 . . . . . . 7 𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}∀𝑏 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏)
64 cnxmet 14767 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
65 xmetres2 14615 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ⊆ ℂ) → ((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})) ∈ (∞Met‘{𝑥 ∈ ℂ ∣ 𝑥 # 0}))
6664, 11, 65mp2an 426 . . . . . . . 8 ((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})) ∈ (∞Met‘{𝑥 ∈ ℂ ∣ 𝑥 # 0})
67 eqid 2196 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})) = ((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))
68 eqid 2196 . . . . . . . . . . . 12 (MetOpen‘((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))) = (MetOpen‘((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})))
6967, 7, 68metrest 14742 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ⊆ ℂ) → (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0}) = (MetOpen‘((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))))
7064, 11, 69mp2an 426 . . . . . . . . . 10 (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0}) = (MetOpen‘((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})))
7110, 70eqtri 2217 . . . . . . . . 9 𝐾 = (MetOpen‘((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})))
7271, 7metcn 14750 . . . . . . . 8 ((((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})) ∈ (∞Met‘{𝑥 ∈ ℂ ∣ 𝑥 # 0}) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) ∈ (𝐾 Cn 𝐽) ↔ ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)):{𝑥 ∈ ℂ ∣ 𝑥 # 0}⟶ℂ ∧ ∀𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}∀𝑏 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏))))
7366, 64, 72mp2an 426 . . . . . . 7 ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) ∈ (𝐾 Cn 𝐽) ↔ ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)):{𝑥 ∈ ℂ ∣ 𝑥 # 0}⟶ℂ ∧ ∀𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}∀𝑏 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏)))
7422, 63, 73mpbir2an 944 . . . . . 6 (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) ∈ (𝐾 Cn 𝐽)
7574a1i 9 . . . . 5 (⊤ → (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) ∈ (𝐾 Cn 𝐽))
76 oveq2 5930 . . . . 5 (𝑞 = 𝑧 → (1 / 𝑞) = (1 / 𝑧))
779, 14, 16, 14, 75, 76cnmpt21 14527 . . . 4 (⊤ → (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑧)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
787mulcncntop 14800 . . . . 5 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
7978a1i 9 . . . 4 (⊤ → · ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
809, 14, 15, 77, 79cnmpt22f 14531 . . 3 (⊤ → (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 · (1 / 𝑧))) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
8180mptru 1373 . 2 (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 · (1 / 𝑧))) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
826, 81eqeltri 2269 1 (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 / 𝑧)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wtru 1365  wcel 2167  wral 2475  wrex 2476  {crab 2479  wss 3157  {cpr 3623   class class class wbr 4033  cmpt 4094   × cxp 4661  cres 4665  ccom 4667  wf 5254  cfv 5258  (class class class)co 5922  cmpo 5924  infcinf 7049  cc 7877  cr 7878  0cc0 7879  1c1 7880   · cmul 7884   < clt 8061  cmin 8197   # cap 8608   / cdiv 8699  2c2 9041  +crp 9728  abscabs 11162  t crest 12910  ∞Metcxmet 14092  MetOpencmopn 14097  TopOnctopon 14246   Cn ccn 14421   ×t ctx 14488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-cn 14424  df-cnp 14425  df-tx 14489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator