| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strslfv2d | GIF version | ||
| Description: Deduction version of strslfv 12921. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.) |
| Ref | Expression |
|---|---|
| strslfv2d.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| strfv2d.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| strfv2d.f | ⊢ (𝜑 → Fun ◡◡𝑆) |
| strfv2d.n | ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
| strfv2d.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| strslfv2d | ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strslfv2d.e | . . . 4 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 2 | 1 | simpli 111 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
| 3 | strfv2d.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 4 | 1 | simpri 113 | . . . 4 ⊢ (𝐸‘ndx) ∈ ℕ |
| 5 | 4 | a1i 9 | . . 3 ⊢ (𝜑 → (𝐸‘ndx) ∈ ℕ) |
| 6 | 2, 3, 5 | strnfvnd 12896 | . 2 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘(𝐸‘ndx))) |
| 7 | cnvcnv2 5141 | . . . 4 ⊢ ◡◡𝑆 = (𝑆 ↾ V) | |
| 8 | 7 | fveq1i 5584 | . . 3 ⊢ (◡◡𝑆‘(𝐸‘ndx)) = ((𝑆 ↾ V)‘(𝐸‘ndx)) |
| 9 | 5 | elexd 2786 | . . . 4 ⊢ (𝜑 → (𝐸‘ndx) ∈ V) |
| 10 | fvres 5607 | . . . 4 ⊢ ((𝐸‘ndx) ∈ V → ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))) | |
| 11 | 9, 10 | syl 14 | . . 3 ⊢ (𝜑 → ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))) |
| 12 | 8, 11 | eqtrid 2251 | . 2 ⊢ (𝜑 → (◡◡𝑆‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))) |
| 13 | strfv2d.f | . . 3 ⊢ (𝜑 → Fun ◡◡𝑆) | |
| 14 | strfv2d.n | . . . . 5 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) | |
| 15 | strfv2d.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 16 | 15 | elexd 2786 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ V) |
| 17 | 9, 16 | opelxpd 4712 | . . . . 5 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ (V × V)) |
| 18 | 14, 17 | elind 3359 | . . . 4 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ (𝑆 ∩ (V × V))) |
| 19 | cnvcnv 5140 | . . . 4 ⊢ ◡◡𝑆 = (𝑆 ∩ (V × V)) | |
| 20 | 18, 19 | eleqtrrdi 2300 | . . 3 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ ◡◡𝑆) |
| 21 | funopfv 5625 | . . 3 ⊢ (Fun ◡◡𝑆 → (〈(𝐸‘ndx), 𝐶〉 ∈ ◡◡𝑆 → (◡◡𝑆‘(𝐸‘ndx)) = 𝐶)) | |
| 22 | 13, 20, 21 | sylc 62 | . 2 ⊢ (𝜑 → (◡◡𝑆‘(𝐸‘ndx)) = 𝐶) |
| 23 | 6, 12, 22 | 3eqtr2rd 2246 | 1 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∩ cin 3166 〈cop 3637 × cxp 4677 ◡ccnv 4678 ↾ cres 4681 Fun wfun 5270 ‘cfv 5276 ℕcn 9043 ndxcnx 12873 Slot cslot 12875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-iota 5237 df-fun 5278 df-fv 5284 df-slot 12880 |
| This theorem is referenced by: strslfv2 12920 strslfv 12921 strslfv3 12922 opelstrsl 12990 |
| Copyright terms: Public domain | W3C validator |