| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strslfv2d | GIF version | ||
| Description: Deduction version of strslfv 13043. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.) |
| Ref | Expression |
|---|---|
| strslfv2d.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| strfv2d.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| strfv2d.f | ⊢ (𝜑 → Fun ◡◡𝑆) |
| strfv2d.n | ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
| strfv2d.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| strslfv2d | ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strslfv2d.e | . . . 4 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 2 | 1 | simpli 111 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
| 3 | strfv2d.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 4 | 1 | simpri 113 | . . . 4 ⊢ (𝐸‘ndx) ∈ ℕ |
| 5 | 4 | a1i 9 | . . 3 ⊢ (𝜑 → (𝐸‘ndx) ∈ ℕ) |
| 6 | 2, 3, 5 | strnfvnd 13018 | . 2 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘(𝐸‘ndx))) |
| 7 | cnvcnv2 5158 | . . . 4 ⊢ ◡◡𝑆 = (𝑆 ↾ V) | |
| 8 | 7 | fveq1i 5604 | . . 3 ⊢ (◡◡𝑆‘(𝐸‘ndx)) = ((𝑆 ↾ V)‘(𝐸‘ndx)) |
| 9 | 5 | elexd 2793 | . . . 4 ⊢ (𝜑 → (𝐸‘ndx) ∈ V) |
| 10 | fvres 5627 | . . . 4 ⊢ ((𝐸‘ndx) ∈ V → ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))) | |
| 11 | 9, 10 | syl 14 | . . 3 ⊢ (𝜑 → ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))) |
| 12 | 8, 11 | eqtrid 2254 | . 2 ⊢ (𝜑 → (◡◡𝑆‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))) |
| 13 | strfv2d.f | . . 3 ⊢ (𝜑 → Fun ◡◡𝑆) | |
| 14 | strfv2d.n | . . . . 5 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) | |
| 15 | strfv2d.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 16 | 15 | elexd 2793 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ V) |
| 17 | 9, 16 | opelxpd 4729 | . . . . 5 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ (V × V)) |
| 18 | 14, 17 | elind 3369 | . . . 4 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ (𝑆 ∩ (V × V))) |
| 19 | cnvcnv 5157 | . . . 4 ⊢ ◡◡𝑆 = (𝑆 ∩ (V × V)) | |
| 20 | 18, 19 | eleqtrrdi 2303 | . . 3 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ ◡◡𝑆) |
| 21 | funopfv 5645 | . . 3 ⊢ (Fun ◡◡𝑆 → (〈(𝐸‘ndx), 𝐶〉 ∈ ◡◡𝑆 → (◡◡𝑆‘(𝐸‘ndx)) = 𝐶)) | |
| 22 | 13, 20, 21 | sylc 62 | . 2 ⊢ (𝜑 → (◡◡𝑆‘(𝐸‘ndx)) = 𝐶) |
| 23 | 6, 12, 22 | 3eqtr2rd 2249 | 1 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ∩ cin 3176 〈cop 3649 × cxp 4694 ◡ccnv 4695 ↾ cres 4698 Fun wfun 5288 ‘cfv 5294 ℕcn 9078 ndxcnx 12995 Slot cslot 12997 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fv 5302 df-slot 13002 |
| This theorem is referenced by: strslfv2 13042 strslfv 13043 strslfv3 13044 opelstrsl 13113 |
| Copyright terms: Public domain | W3C validator |