| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strslfv2d | GIF version | ||
| Description: Deduction version of strslfv 13085. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.) |
| Ref | Expression |
|---|---|
| strslfv2d.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| strfv2d.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| strfv2d.f | ⊢ (𝜑 → Fun ◡◡𝑆) |
| strfv2d.n | ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
| strfv2d.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| strslfv2d | ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strslfv2d.e | . . . 4 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 2 | 1 | simpli 111 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
| 3 | strfv2d.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 4 | 1 | simpri 113 | . . . 4 ⊢ (𝐸‘ndx) ∈ ℕ |
| 5 | 4 | a1i 9 | . . 3 ⊢ (𝜑 → (𝐸‘ndx) ∈ ℕ) |
| 6 | 2, 3, 5 | strnfvnd 13060 | . 2 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘(𝐸‘ndx))) |
| 7 | cnvcnv2 5182 | . . . 4 ⊢ ◡◡𝑆 = (𝑆 ↾ V) | |
| 8 | 7 | fveq1i 5630 | . . 3 ⊢ (◡◡𝑆‘(𝐸‘ndx)) = ((𝑆 ↾ V)‘(𝐸‘ndx)) |
| 9 | 5 | elexd 2813 | . . . 4 ⊢ (𝜑 → (𝐸‘ndx) ∈ V) |
| 10 | fvres 5653 | . . . 4 ⊢ ((𝐸‘ndx) ∈ V → ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))) | |
| 11 | 9, 10 | syl 14 | . . 3 ⊢ (𝜑 → ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))) |
| 12 | 8, 11 | eqtrid 2274 | . 2 ⊢ (𝜑 → (◡◡𝑆‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))) |
| 13 | strfv2d.f | . . 3 ⊢ (𝜑 → Fun ◡◡𝑆) | |
| 14 | strfv2d.n | . . . . 5 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) | |
| 15 | strfv2d.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 16 | 15 | elexd 2813 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ V) |
| 17 | 9, 16 | opelxpd 4752 | . . . . 5 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ (V × V)) |
| 18 | 14, 17 | elind 3389 | . . . 4 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ (𝑆 ∩ (V × V))) |
| 19 | cnvcnv 5181 | . . . 4 ⊢ ◡◡𝑆 = (𝑆 ∩ (V × V)) | |
| 20 | 18, 19 | eleqtrrdi 2323 | . . 3 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ ◡◡𝑆) |
| 21 | funopfv 5673 | . . 3 ⊢ (Fun ◡◡𝑆 → (〈(𝐸‘ndx), 𝐶〉 ∈ ◡◡𝑆 → (◡◡𝑆‘(𝐸‘ndx)) = 𝐶)) | |
| 22 | 13, 20, 21 | sylc 62 | . 2 ⊢ (𝜑 → (◡◡𝑆‘(𝐸‘ndx)) = 𝐶) |
| 23 | 6, 12, 22 | 3eqtr2rd 2269 | 1 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∩ cin 3196 〈cop 3669 × cxp 4717 ◡ccnv 4718 ↾ cres 4721 Fun wfun 5312 ‘cfv 5318 ℕcn 9118 ndxcnx 13037 Slot cslot 13039 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-slot 13044 |
| This theorem is referenced by: strslfv2 13084 strslfv 13085 strslfv3 13086 opelstrsl 13155 |
| Copyright terms: Public domain | W3C validator |