ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv2d GIF version

Theorem strslfv2d 12919
Description: Deduction version of strslfv 12921. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strslfv2d.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
strfv2d.s (𝜑𝑆𝑉)
strfv2d.f (𝜑 → Fun 𝑆)
strfv2d.n (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
strfv2d.c (𝜑𝐶𝑊)
Assertion
Ref Expression
strslfv2d (𝜑𝐶 = (𝐸𝑆))

Proof of Theorem strslfv2d
StepHypRef Expression
1 strslfv2d.e . . . 4 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
21simpli 111 . . 3 𝐸 = Slot (𝐸‘ndx)
3 strfv2d.s . . 3 (𝜑𝑆𝑉)
41simpri 113 . . . 4 (𝐸‘ndx) ∈ ℕ
54a1i 9 . . 3 (𝜑 → (𝐸‘ndx) ∈ ℕ)
62, 3, 5strnfvnd 12896 . 2 (𝜑 → (𝐸𝑆) = (𝑆‘(𝐸‘ndx)))
7 cnvcnv2 5141 . . . 4 𝑆 = (𝑆 ↾ V)
87fveq1i 5584 . . 3 (𝑆‘(𝐸‘ndx)) = ((𝑆 ↾ V)‘(𝐸‘ndx))
95elexd 2786 . . . 4 (𝜑 → (𝐸‘ndx) ∈ V)
10 fvres 5607 . . . 4 ((𝐸‘ndx) ∈ V → ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx)))
119, 10syl 14 . . 3 (𝜑 → ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx)))
128, 11eqtrid 2251 . 2 (𝜑 → (𝑆‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx)))
13 strfv2d.f . . 3 (𝜑 → Fun 𝑆)
14 strfv2d.n . . . . 5 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
15 strfv2d.c . . . . . . 7 (𝜑𝐶𝑊)
1615elexd 2786 . . . . . 6 (𝜑𝐶 ∈ V)
179, 16opelxpd 4712 . . . . 5 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V))
1814, 17elind 3359 . . . 4 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (𝑆 ∩ (V × V)))
19 cnvcnv 5140 . . . 4 𝑆 = (𝑆 ∩ (V × V))
2018, 19eleqtrrdi 2300 . . 3 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
21 funopfv 5625 . . 3 (Fun 𝑆 → (⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆 → (𝑆‘(𝐸‘ndx)) = 𝐶))
2213, 20, 21sylc 62 . 2 (𝜑 → (𝑆‘(𝐸‘ndx)) = 𝐶)
236, 12, 223eqtr2rd 2246 1 (𝜑𝐶 = (𝐸𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  Vcvv 2773  cin 3166  cop 3637   × cxp 4677  ccnv 4678  cres 4681  Fun wfun 5270  cfv 5276  cn 9043  ndxcnx 12873  Slot cslot 12875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-iota 5237  df-fun 5278  df-fv 5284  df-slot 12880
This theorem is referenced by:  strslfv2  12920  strslfv  12921  strslfv3  12922  opelstrsl  12990
  Copyright terms: Public domain W3C validator