Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > strslfv2d | GIF version |
Description: Deduction version of strslfv 12438. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.) |
Ref | Expression |
---|---|
strslfv2d.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
strfv2d.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
strfv2d.f | ⊢ (𝜑 → Fun ◡◡𝑆) |
strfv2d.n | ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
strfv2d.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
strslfv2d | ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strslfv2d.e | . . . 4 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
2 | 1 | simpli 110 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
3 | strfv2d.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
4 | 1 | simpri 112 | . . . 4 ⊢ (𝐸‘ndx) ∈ ℕ |
5 | 4 | a1i 9 | . . 3 ⊢ (𝜑 → (𝐸‘ndx) ∈ ℕ) |
6 | 2, 3, 5 | strnfvnd 12414 | . 2 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘(𝐸‘ndx))) |
7 | cnvcnv2 5057 | . . . 4 ⊢ ◡◡𝑆 = (𝑆 ↾ V) | |
8 | 7 | fveq1i 5487 | . . 3 ⊢ (◡◡𝑆‘(𝐸‘ndx)) = ((𝑆 ↾ V)‘(𝐸‘ndx)) |
9 | 5 | elexd 2739 | . . . 4 ⊢ (𝜑 → (𝐸‘ndx) ∈ V) |
10 | fvres 5510 | . . . 4 ⊢ ((𝐸‘ndx) ∈ V → ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))) | |
11 | 9, 10 | syl 14 | . . 3 ⊢ (𝜑 → ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))) |
12 | 8, 11 | syl5eq 2211 | . 2 ⊢ (𝜑 → (◡◡𝑆‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))) |
13 | strfv2d.f | . . 3 ⊢ (𝜑 → Fun ◡◡𝑆) | |
14 | strfv2d.n | . . . . 5 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) | |
15 | strfv2d.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
16 | 15 | elexd 2739 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ V) |
17 | 9, 16 | opelxpd 4637 | . . . . 5 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ (V × V)) |
18 | 14, 17 | elind 3307 | . . . 4 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ (𝑆 ∩ (V × V))) |
19 | cnvcnv 5056 | . . . 4 ⊢ ◡◡𝑆 = (𝑆 ∩ (V × V)) | |
20 | 18, 19 | eleqtrrdi 2260 | . . 3 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ ◡◡𝑆) |
21 | funopfv 5526 | . . 3 ⊢ (Fun ◡◡𝑆 → (〈(𝐸‘ndx), 𝐶〉 ∈ ◡◡𝑆 → (◡◡𝑆‘(𝐸‘ndx)) = 𝐶)) | |
22 | 13, 20, 21 | sylc 62 | . 2 ⊢ (𝜑 → (◡◡𝑆‘(𝐸‘ndx)) = 𝐶) |
23 | 6, 12, 22 | 3eqtr2rd 2205 | 1 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ∩ cin 3115 〈cop 3579 × cxp 4602 ◡ccnv 4603 ↾ cres 4606 Fun wfun 5182 ‘cfv 5188 ℕcn 8857 ndxcnx 12391 Slot cslot 12393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fv 5196 df-slot 12398 |
This theorem is referenced by: strslfv2 12437 strslfv 12438 opelstrsl 12491 |
Copyright terms: Public domain | W3C validator |