ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv2d GIF version

Theorem strslfv2d 13041
Description: Deduction version of strslfv 13043. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strslfv2d.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
strfv2d.s (𝜑𝑆𝑉)
strfv2d.f (𝜑 → Fun 𝑆)
strfv2d.n (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
strfv2d.c (𝜑𝐶𝑊)
Assertion
Ref Expression
strslfv2d (𝜑𝐶 = (𝐸𝑆))

Proof of Theorem strslfv2d
StepHypRef Expression
1 strslfv2d.e . . . 4 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
21simpli 111 . . 3 𝐸 = Slot (𝐸‘ndx)
3 strfv2d.s . . 3 (𝜑𝑆𝑉)
41simpri 113 . . . 4 (𝐸‘ndx) ∈ ℕ
54a1i 9 . . 3 (𝜑 → (𝐸‘ndx) ∈ ℕ)
62, 3, 5strnfvnd 13018 . 2 (𝜑 → (𝐸𝑆) = (𝑆‘(𝐸‘ndx)))
7 cnvcnv2 5158 . . . 4 𝑆 = (𝑆 ↾ V)
87fveq1i 5604 . . 3 (𝑆‘(𝐸‘ndx)) = ((𝑆 ↾ V)‘(𝐸‘ndx))
95elexd 2793 . . . 4 (𝜑 → (𝐸‘ndx) ∈ V)
10 fvres 5627 . . . 4 ((𝐸‘ndx) ∈ V → ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx)))
119, 10syl 14 . . 3 (𝜑 → ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx)))
128, 11eqtrid 2254 . 2 (𝜑 → (𝑆‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx)))
13 strfv2d.f . . 3 (𝜑 → Fun 𝑆)
14 strfv2d.n . . . . 5 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
15 strfv2d.c . . . . . . 7 (𝜑𝐶𝑊)
1615elexd 2793 . . . . . 6 (𝜑𝐶 ∈ V)
179, 16opelxpd 4729 . . . . 5 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V))
1814, 17elind 3369 . . . 4 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (𝑆 ∩ (V × V)))
19 cnvcnv 5157 . . . 4 𝑆 = (𝑆 ∩ (V × V))
2018, 19eleqtrrdi 2303 . . 3 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
21 funopfv 5645 . . 3 (Fun 𝑆 → (⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆 → (𝑆‘(𝐸‘ndx)) = 𝐶))
2213, 20, 21sylc 62 . 2 (𝜑 → (𝑆‘(𝐸‘ndx)) = 𝐶)
236, 12, 223eqtr2rd 2249 1 (𝜑𝐶 = (𝐸𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  Vcvv 2779  cin 3176  cop 3649   × cxp 4694  ccnv 4695  cres 4698  Fun wfun 5288  cfv 5294  cn 9078  ndxcnx 12995  Slot cslot 12997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fv 5302  df-slot 13002
This theorem is referenced by:  strslfv2  13042  strslfv  13043  strslfv3  13044  opelstrsl  13113
  Copyright terms: Public domain W3C validator