![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strslfv2d | GIF version |
Description: Deduction version of strslfv 12532. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.) |
Ref | Expression |
---|---|
strslfv2d.e | β’ (πΈ = Slot (πΈβndx) β§ (πΈβndx) β β) |
strfv2d.s | β’ (π β π β π) |
strfv2d.f | β’ (π β Fun β‘β‘π) |
strfv2d.n | β’ (π β β¨(πΈβndx), πΆβ© β π) |
strfv2d.c | β’ (π β πΆ β π) |
Ref | Expression |
---|---|
strslfv2d | β’ (π β πΆ = (πΈβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strslfv2d.e | . . . 4 β’ (πΈ = Slot (πΈβndx) β§ (πΈβndx) β β) | |
2 | 1 | simpli 111 | . . 3 β’ πΈ = Slot (πΈβndx) |
3 | strfv2d.s | . . 3 β’ (π β π β π) | |
4 | 1 | simpri 113 | . . . 4 β’ (πΈβndx) β β |
5 | 4 | a1i 9 | . . 3 β’ (π β (πΈβndx) β β) |
6 | 2, 3, 5 | strnfvnd 12507 | . 2 β’ (π β (πΈβπ) = (πβ(πΈβndx))) |
7 | cnvcnv2 5097 | . . . 4 β’ β‘β‘π = (π βΎ V) | |
8 | 7 | fveq1i 5532 | . . 3 β’ (β‘β‘πβ(πΈβndx)) = ((π βΎ V)β(πΈβndx)) |
9 | 5 | elexd 2765 | . . . 4 β’ (π β (πΈβndx) β V) |
10 | fvres 5555 | . . . 4 β’ ((πΈβndx) β V β ((π βΎ V)β(πΈβndx)) = (πβ(πΈβndx))) | |
11 | 9, 10 | syl 14 | . . 3 β’ (π β ((π βΎ V)β(πΈβndx)) = (πβ(πΈβndx))) |
12 | 8, 11 | eqtrid 2234 | . 2 β’ (π β (β‘β‘πβ(πΈβndx)) = (πβ(πΈβndx))) |
13 | strfv2d.f | . . 3 β’ (π β Fun β‘β‘π) | |
14 | strfv2d.n | . . . . 5 β’ (π β β¨(πΈβndx), πΆβ© β π) | |
15 | strfv2d.c | . . . . . . 7 β’ (π β πΆ β π) | |
16 | 15 | elexd 2765 | . . . . . 6 β’ (π β πΆ β V) |
17 | 9, 16 | opelxpd 4674 | . . . . 5 β’ (π β β¨(πΈβndx), πΆβ© β (V Γ V)) |
18 | 14, 17 | elind 3335 | . . . 4 β’ (π β β¨(πΈβndx), πΆβ© β (π β© (V Γ V))) |
19 | cnvcnv 5096 | . . . 4 β’ β‘β‘π = (π β© (V Γ V)) | |
20 | 18, 19 | eleqtrrdi 2283 | . . 3 β’ (π β β¨(πΈβndx), πΆβ© β β‘β‘π) |
21 | funopfv 5572 | . . 3 β’ (Fun β‘β‘π β (β¨(πΈβndx), πΆβ© β β‘β‘π β (β‘β‘πβ(πΈβndx)) = πΆ)) | |
22 | 13, 20, 21 | sylc 62 | . 2 β’ (π β (β‘β‘πβ(πΈβndx)) = πΆ) |
23 | 6, 12, 22 | 3eqtr2rd 2229 | 1 β’ (π β πΆ = (πΈβπ)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1364 β wcel 2160 Vcvv 2752 β© cin 3143 β¨cop 3610 Γ cxp 4639 β‘ccnv 4640 βΎ cres 4643 Fun wfun 5226 βcfv 5232 βcn 8939 ndxcnx 12484 Slot cslot 12486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-sbc 2978 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-iota 5193 df-fun 5234 df-fv 5240 df-slot 12491 |
This theorem is referenced by: strslfv2 12531 strslfv 12532 opelstrsl 12599 |
Copyright terms: Public domain | W3C validator |