![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strslfv2d | GIF version |
Description: Deduction version of strslfv 12663. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.) |
Ref | Expression |
---|---|
strslfv2d.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
strfv2d.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
strfv2d.f | ⊢ (𝜑 → Fun ◡◡𝑆) |
strfv2d.n | ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
strfv2d.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
strslfv2d | ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strslfv2d.e | . . . 4 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
2 | 1 | simpli 111 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
3 | strfv2d.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
4 | 1 | simpri 113 | . . . 4 ⊢ (𝐸‘ndx) ∈ ℕ |
5 | 4 | a1i 9 | . . 3 ⊢ (𝜑 → (𝐸‘ndx) ∈ ℕ) |
6 | 2, 3, 5 | strnfvnd 12638 | . 2 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘(𝐸‘ndx))) |
7 | cnvcnv2 5119 | . . . 4 ⊢ ◡◡𝑆 = (𝑆 ↾ V) | |
8 | 7 | fveq1i 5555 | . . 3 ⊢ (◡◡𝑆‘(𝐸‘ndx)) = ((𝑆 ↾ V)‘(𝐸‘ndx)) |
9 | 5 | elexd 2773 | . . . 4 ⊢ (𝜑 → (𝐸‘ndx) ∈ V) |
10 | fvres 5578 | . . . 4 ⊢ ((𝐸‘ndx) ∈ V → ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))) | |
11 | 9, 10 | syl 14 | . . 3 ⊢ (𝜑 → ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))) |
12 | 8, 11 | eqtrid 2238 | . 2 ⊢ (𝜑 → (◡◡𝑆‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))) |
13 | strfv2d.f | . . 3 ⊢ (𝜑 → Fun ◡◡𝑆) | |
14 | strfv2d.n | . . . . 5 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) | |
15 | strfv2d.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
16 | 15 | elexd 2773 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ V) |
17 | 9, 16 | opelxpd 4692 | . . . . 5 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ (V × V)) |
18 | 14, 17 | elind 3344 | . . . 4 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ (𝑆 ∩ (V × V))) |
19 | cnvcnv 5118 | . . . 4 ⊢ ◡◡𝑆 = (𝑆 ∩ (V × V)) | |
20 | 18, 19 | eleqtrrdi 2287 | . . 3 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ ◡◡𝑆) |
21 | funopfv 5596 | . . 3 ⊢ (Fun ◡◡𝑆 → (〈(𝐸‘ndx), 𝐶〉 ∈ ◡◡𝑆 → (◡◡𝑆‘(𝐸‘ndx)) = 𝐶)) | |
22 | 13, 20, 21 | sylc 62 | . 2 ⊢ (𝜑 → (◡◡𝑆‘(𝐸‘ndx)) = 𝐶) |
23 | 6, 12, 22 | 3eqtr2rd 2233 | 1 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∩ cin 3152 〈cop 3621 × cxp 4657 ◡ccnv 4658 ↾ cres 4661 Fun wfun 5248 ‘cfv 5254 ℕcn 8982 ndxcnx 12615 Slot cslot 12617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fv 5262 df-slot 12622 |
This theorem is referenced by: strslfv2 12662 strslfv 12663 opelstrsl 12732 |
Copyright terms: Public domain | W3C validator |