ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strsl0 GIF version

Theorem strsl0 12931
Description: All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 31-Jan-2023.)
Hypothesis
Ref Expression
strsl0.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
Assertion
Ref Expression
strsl0 ∅ = (𝐸‘∅)

Proof of Theorem strsl0
StepHypRef Expression
1 0ex 4176 . . 3 ∅ ∈ V
2 strsl0.e . . . 4 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
32simpli 111 . . 3 𝐸 = Slot (𝐸‘ndx)
42simpri 113 . . 3 (𝐸‘ndx) ∈ ℕ
51, 3, 4strnfvn 12903 . 2 (𝐸‘∅) = (∅‘(𝐸‘ndx))
6 0fv 5622 . 2 (∅‘(𝐸‘ndx)) = ∅
75, 6eqtr2i 2228 1 ∅ = (𝐸‘∅)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  wcel 2177  c0 3462  cfv 5277  cn 9049  ndxcnx 12879  Slot cslot 12881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3001  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-iota 5238  df-fun 5279  df-fv 5285  df-slot 12886
This theorem is referenced by:  base0  12932  iedgval0  15701
  Copyright terms: Public domain W3C validator