| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strsl0 | GIF version | ||
| Description: All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 31-Jan-2023.) |
| Ref | Expression |
|---|---|
| strsl0.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| Ref | Expression |
|---|---|
| strsl0 | ⊢ ∅ = (𝐸‘∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4210 | . . 3 ⊢ ∅ ∈ V | |
| 2 | strsl0.e | . . . 4 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 3 | 2 | simpli 111 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
| 4 | 2 | simpri 113 | . . 3 ⊢ (𝐸‘ndx) ∈ ℕ |
| 5 | 1, 3, 4 | strnfvn 13039 | . 2 ⊢ (𝐸‘∅) = (∅‘(𝐸‘ndx)) |
| 6 | 0fv 5659 | . 2 ⊢ (∅‘(𝐸‘ndx)) = ∅ | |
| 7 | 5, 6 | eqtr2i 2251 | 1 ⊢ ∅ = (𝐸‘∅) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∅c0 3491 ‘cfv 5314 ℕcn 9098 ndxcnx 13015 Slot cslot 13017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-iota 5274 df-fun 5316 df-fv 5322 df-slot 13022 |
| This theorem is referenced by: base0 13068 iedgval0 15840 |
| Copyright terms: Public domain | W3C validator |