ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strsl0 GIF version

Theorem strsl0 11902
Description: All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 31-Jan-2023.)
Hypothesis
Ref Expression
strsl0.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
Assertion
Ref Expression
strsl0 ∅ = (𝐸‘∅)

Proof of Theorem strsl0
StepHypRef Expression
1 0ex 4023 . . 3 ∅ ∈ V
2 strsl0.e . . . 4 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
32simpli 110 . . 3 𝐸 = Slot (𝐸‘ndx)
42simpri 112 . . 3 (𝐸‘ndx) ∈ ℕ
51, 3, 4strnfvn 11875 . 2 (𝐸‘∅) = (∅‘(𝐸‘ndx))
6 0fv 5422 . 2 (∅‘(𝐸‘ndx)) = ∅
75, 6eqtr2i 2137 1 ∅ = (𝐸‘∅)
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1314  wcel 1463  c0 3331  cfv 5091  cn 8677  ndxcnx 11851  Slot cslot 11853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-iota 5056  df-fun 5093  df-fv 5099  df-slot 11858
This theorem is referenced by:  base0  11903
  Copyright terms: Public domain W3C validator