![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strsl0 | GIF version |
Description: All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 31-Jan-2023.) |
Ref | Expression |
---|---|
strsl0.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
Ref | Expression |
---|---|
strsl0 | ⊢ ∅ = (𝐸‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4145 | . . 3 ⊢ ∅ ∈ V | |
2 | strsl0.e | . . . 4 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
3 | 2 | simpli 111 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | 2 | simpri 113 | . . 3 ⊢ (𝐸‘ndx) ∈ ℕ |
5 | 1, 3, 4 | strnfvn 12533 | . 2 ⊢ (𝐸‘∅) = (∅‘(𝐸‘ndx)) |
6 | 0fv 5570 | . 2 ⊢ (∅‘(𝐸‘ndx)) = ∅ | |
7 | 5, 6 | eqtr2i 2211 | 1 ⊢ ∅ = (𝐸‘∅) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2160 ∅c0 3437 ‘cfv 5235 ℕcn 8949 ndxcnx 12509 Slot cslot 12511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-iota 5196 df-fun 5237 df-fv 5243 df-slot 12516 |
This theorem is referenced by: base0 12562 |
Copyright terms: Public domain | W3C validator |