ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strsl0 GIF version

Theorem strsl0 13067
Description: All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 31-Jan-2023.)
Hypothesis
Ref Expression
strsl0.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
Assertion
Ref Expression
strsl0 ∅ = (𝐸‘∅)

Proof of Theorem strsl0
StepHypRef Expression
1 0ex 4210 . . 3 ∅ ∈ V
2 strsl0.e . . . 4 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
32simpli 111 . . 3 𝐸 = Slot (𝐸‘ndx)
42simpri 113 . . 3 (𝐸‘ndx) ∈ ℕ
51, 3, 4strnfvn 13039 . 2 (𝐸‘∅) = (∅‘(𝐸‘ndx))
6 0fv 5659 . 2 (∅‘(𝐸‘ndx)) = ∅
75, 6eqtr2i 2251 1 ∅ = (𝐸‘∅)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wcel 2200  c0 3491  cfv 5314  cn 9098  ndxcnx 13015  Slot cslot 13017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-iota 5274  df-fun 5316  df-fv 5322  df-slot 13022
This theorem is referenced by:  base0  13068  iedgval0  15840
  Copyright terms: Public domain W3C validator