ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pire GIF version

Theorem pire 13460
Description: π is a real number. (Contributed by Paul Chapman, 23-Jan-2008.)
Assertion
Ref Expression
pire π ∈ ℝ

Proof of Theorem pire
StepHypRef Expression
1 pilem3 13457 . . 3 (π ∈ (2(,)4) ∧ (sin‘π) = 0)
21simpli 110 . 2 π ∈ (2(,)4)
3 elioore 9856 . 2 (π ∈ (2(,)4) → π ∈ ℝ)
42, 3ax-mp 5 1 π ∈ ℝ
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141  cfv 5196  (class class class)co 5850  cr 7760  0cc0 7761  2c2 8916  4c4 8918  (,)cioo 9832  sincsin 11594  πcpi 11597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881  ax-pre-suploc 7882  ax-addf 7883  ax-mulf 7884
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-disj 3965  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-of 6058  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-frec 6367  df-1o 6392  df-oadd 6396  df-er 6509  df-map 6624  df-pm 6625  df-en 6715  df-dom 6716  df-fin 6717  df-sup 6957  df-inf 6958  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-5 8927  df-6 8928  df-7 8929  df-8 8930  df-9 8931  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-xneg 9716  df-xadd 9717  df-ioo 9836  df-ioc 9837  df-ico 9838  df-icc 9839  df-fz 9953  df-fzo 10086  df-seqfrec 10389  df-exp 10463  df-fac 10647  df-bc 10669  df-ihash 10697  df-shft 10766  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950  df-clim 11229  df-sumdc 11304  df-ef 11598  df-sin 11600  df-cos 11601  df-pi 11603  df-rest 12568  df-topgen 12587  df-psmet 12740  df-xmet 12741  df-met 12742  df-bl 12743  df-mopn 12744  df-top 12749  df-topon 12762  df-bases 12794  df-ntr 12849  df-cn 12941  df-cnp 12942  df-tx 13006  df-cncf 13311  df-limced 13378  df-dvap 13379
This theorem is referenced by:  picn  13461  pipos  13462  pirp  13463  sinhalfpilem  13465  halfpire  13466  sincosq1lem  13499  sincosq2sgn  13501  sincosq3sgn  13502  sincosq4sgn  13503  sinq12gt0  13504  sinq34lt0t  13505  cosq14gt0  13506  cosq23lt0  13507  coseq00topi  13509  coseq0negpitopi  13510  tangtx  13512  sincos4thpi  13514  tan4thpi  13515  sincos6thpi  13516  pigt3  13518  pige3  13519  coskpi  13522  cosordlem  13523  cosq34lt1  13524  cos02pilt1  13525  cos0pilt1  13526  cos11  13527  ioocosf1o  13528  negpitopissre  13529  rpabscxpbnd  13612  taupi  14062
  Copyright terms: Public domain W3C validator