| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sin4lt0 | GIF version | ||
| Description: The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.) |
| Ref | Expression |
|---|---|
| sin4lt0 | ⊢ (sin‘4) < 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2t2e4 9253 | . . . 4 ⊢ (2 · 2) = 4 | |
| 2 | 1 | fveq2i 5626 | . . 3 ⊢ (sin‘(2 · 2)) = (sin‘4) |
| 3 | 2cn 9169 | . . . 4 ⊢ 2 ∈ ℂ | |
| 4 | sin2t 12246 | . . . 4 ⊢ (2 ∈ ℂ → (sin‘(2 · 2)) = (2 · ((sin‘2) · (cos‘2)))) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (sin‘(2 · 2)) = (2 · ((sin‘2) · (cos‘2))) |
| 6 | 2, 5 | eqtr3i 2252 | . 2 ⊢ (sin‘4) = (2 · ((sin‘2) · (cos‘2))) |
| 7 | sincos2sgn 12263 | . . . . . . 7 ⊢ (0 < (sin‘2) ∧ (cos‘2) < 0) | |
| 8 | 7 | simpri 113 | . . . . . 6 ⊢ (cos‘2) < 0 |
| 9 | 2re 9168 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 10 | recoscl 12218 | . . . . . . . 8 ⊢ (2 ∈ ℝ → (cos‘2) ∈ ℝ) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ (cos‘2) ∈ ℝ |
| 12 | 0re 8134 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 13 | resincl 12217 | . . . . . . . . 9 ⊢ (2 ∈ ℝ → (sin‘2) ∈ ℝ) | |
| 14 | 9, 13 | ax-mp 5 | . . . . . . . 8 ⊢ (sin‘2) ∈ ℝ |
| 15 | 7 | simpli 111 | . . . . . . . 8 ⊢ 0 < (sin‘2) |
| 16 | 14, 15 | pm3.2i 272 | . . . . . . 7 ⊢ ((sin‘2) ∈ ℝ ∧ 0 < (sin‘2)) |
| 17 | ltmul2 8991 | . . . . . . 7 ⊢ (((cos‘2) ∈ ℝ ∧ 0 ∈ ℝ ∧ ((sin‘2) ∈ ℝ ∧ 0 < (sin‘2))) → ((cos‘2) < 0 ↔ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0))) | |
| 18 | 11, 12, 16, 17 | mp3an 1371 | . . . . . 6 ⊢ ((cos‘2) < 0 ↔ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0)) |
| 19 | 8, 18 | mpbi 145 | . . . . 5 ⊢ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0) |
| 20 | 14 | recni 8146 | . . . . . 6 ⊢ (sin‘2) ∈ ℂ |
| 21 | 20 | mul01i 8525 | . . . . 5 ⊢ ((sin‘2) · 0) = 0 |
| 22 | 19, 21 | breqtri 4107 | . . . 4 ⊢ ((sin‘2) · (cos‘2)) < 0 |
| 23 | 14, 11 | remulcli 8148 | . . . . 5 ⊢ ((sin‘2) · (cos‘2)) ∈ ℝ |
| 24 | 2pos 9189 | . . . . . 6 ⊢ 0 < 2 | |
| 25 | 9, 24 | pm3.2i 272 | . . . . 5 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 26 | ltmul2 8991 | . . . . 5 ⊢ ((((sin‘2) · (cos‘2)) ∈ ℝ ∧ 0 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((sin‘2) · (cos‘2)) < 0 ↔ (2 · ((sin‘2) · (cos‘2))) < (2 · 0))) | |
| 27 | 23, 12, 25, 26 | mp3an 1371 | . . . 4 ⊢ (((sin‘2) · (cos‘2)) < 0 ↔ (2 · ((sin‘2) · (cos‘2))) < (2 · 0)) |
| 28 | 22, 27 | mpbi 145 | . . 3 ⊢ (2 · ((sin‘2) · (cos‘2))) < (2 · 0) |
| 29 | 3 | mul01i 8525 | . . 3 ⊢ (2 · 0) = 0 |
| 30 | 28, 29 | breqtri 4107 | . 2 ⊢ (2 · ((sin‘2) · (cos‘2))) < 0 |
| 31 | 6, 30 | eqbrtri 4103 | 1 ⊢ (sin‘4) < 0 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 ‘cfv 5314 (class class class)co 5994 ℂcc 7985 ℝcr 7986 0cc0 7987 · cmul 7992 < clt 8169 2c2 9149 4c4 9151 sincsin 12141 cosccos 12142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-disj 4059 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-frec 6527 df-1o 6552 df-oadd 6556 df-er 6670 df-en 6878 df-dom 6879 df-fin 6880 df-sup 7139 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-9 9164 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-ioc 10077 df-ico 10078 df-fz 10193 df-fzo 10327 df-seqfrec 10657 df-exp 10748 df-fac 10935 df-bc 10957 df-ihash 10985 df-shft 11312 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-clim 11776 df-sumdc 11851 df-ef 12145 df-sin 12147 df-cos 12148 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |