ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin4lt0 GIF version

Theorem sin4lt0 11805
Description: The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
sin4lt0 (sin‘4) < 0

Proof of Theorem sin4lt0
StepHypRef Expression
1 2t2e4 9102 . . . 4 (2 · 2) = 4
21fveq2i 5537 . . 3 (sin‘(2 · 2)) = (sin‘4)
3 2cn 9019 . . . 4 2 ∈ ℂ
4 sin2t 11788 . . . 4 (2 ∈ ℂ → (sin‘(2 · 2)) = (2 · ((sin‘2) · (cos‘2))))
53, 4ax-mp 5 . . 3 (sin‘(2 · 2)) = (2 · ((sin‘2) · (cos‘2)))
62, 5eqtr3i 2212 . 2 (sin‘4) = (2 · ((sin‘2) · (cos‘2)))
7 sincos2sgn 11804 . . . . . . 7 (0 < (sin‘2) ∧ (cos‘2) < 0)
87simpri 113 . . . . . 6 (cos‘2) < 0
9 2re 9018 . . . . . . . 8 2 ∈ ℝ
10 recoscl 11760 . . . . . . . 8 (2 ∈ ℝ → (cos‘2) ∈ ℝ)
119, 10ax-mp 5 . . . . . . 7 (cos‘2) ∈ ℝ
12 0re 7986 . . . . . . 7 0 ∈ ℝ
13 resincl 11759 . . . . . . . . 9 (2 ∈ ℝ → (sin‘2) ∈ ℝ)
149, 13ax-mp 5 . . . . . . . 8 (sin‘2) ∈ ℝ
157simpli 111 . . . . . . . 8 0 < (sin‘2)
1614, 15pm3.2i 272 . . . . . . 7 ((sin‘2) ∈ ℝ ∧ 0 < (sin‘2))
17 ltmul2 8842 . . . . . . 7 (((cos‘2) ∈ ℝ ∧ 0 ∈ ℝ ∧ ((sin‘2) ∈ ℝ ∧ 0 < (sin‘2))) → ((cos‘2) < 0 ↔ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0)))
1811, 12, 16, 17mp3an 1348 . . . . . 6 ((cos‘2) < 0 ↔ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0))
198, 18mpbi 145 . . . . 5 ((sin‘2) · (cos‘2)) < ((sin‘2) · 0)
2014recni 7998 . . . . . 6 (sin‘2) ∈ ℂ
2120mul01i 8377 . . . . 5 ((sin‘2) · 0) = 0
2219, 21breqtri 4043 . . . 4 ((sin‘2) · (cos‘2)) < 0
2314, 11remulcli 8000 . . . . 5 ((sin‘2) · (cos‘2)) ∈ ℝ
24 2pos 9039 . . . . . 6 0 < 2
259, 24pm3.2i 272 . . . . 5 (2 ∈ ℝ ∧ 0 < 2)
26 ltmul2 8842 . . . . 5 ((((sin‘2) · (cos‘2)) ∈ ℝ ∧ 0 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((sin‘2) · (cos‘2)) < 0 ↔ (2 · ((sin‘2) · (cos‘2))) < (2 · 0)))
2723, 12, 25, 26mp3an 1348 . . . 4 (((sin‘2) · (cos‘2)) < 0 ↔ (2 · ((sin‘2) · (cos‘2))) < (2 · 0))
2822, 27mpbi 145 . . 3 (2 · ((sin‘2) · (cos‘2))) < (2 · 0)
293mul01i 8377 . . 3 (2 · 0) = 0
3028, 29breqtri 4043 . 2 (2 · ((sin‘2) · (cos‘2))) < 0
316, 30eqbrtri 4039 1 (sin‘4) < 0
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wcel 2160   class class class wbr 4018  cfv 5235  (class class class)co 5895  cc 7838  cr 7839  0cc0 7840   · cmul 7845   < clt 8021  2c2 8999  4c4 9001  sincsin 11683  cosccos 11684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-mulrcl 7939  ax-addcom 7940  ax-mulcom 7941  ax-addass 7942  ax-mulass 7943  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-1rid 7947  ax-0id 7948  ax-rnegex 7949  ax-precex 7950  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-apti 7955  ax-pre-ltadd 7956  ax-pre-mulgt0 7957  ax-pre-mulext 7958  ax-arch 7959  ax-caucvg 7960
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-disj 3996  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-irdg 6394  df-frec 6415  df-1o 6440  df-oadd 6444  df-er 6558  df-en 6766  df-dom 6767  df-fin 6768  df-sup 7012  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-reap 8561  df-ap 8568  df-div 8659  df-inn 8949  df-2 9007  df-3 9008  df-4 9009  df-5 9010  df-6 9011  df-7 9012  df-8 9013  df-9 9014  df-n0 9206  df-z 9283  df-uz 9558  df-q 9649  df-rp 9683  df-ioc 9922  df-ico 9923  df-fz 10038  df-fzo 10172  df-seqfrec 10476  df-exp 10550  df-fac 10737  df-bc 10759  df-ihash 10787  df-shft 10855  df-cj 10882  df-re 10883  df-im 10884  df-rsqrt 11038  df-abs 11039  df-clim 11318  df-sumdc 11393  df-ef 11687  df-sin 11689  df-cos 11690
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator