ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos01bnd GIF version

Theorem cos01bnd 11766
Description: Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
cos01bnd (๐ด โˆˆ (0(,]1) โ†’ ((1 โˆ’ (2 ยท ((๐ดโ†‘2) / 3))) < (cosโ€˜๐ด) โˆง (cosโ€˜๐ด) < (1 โˆ’ ((๐ดโ†‘2) / 3))))

Proof of Theorem cos01bnd
Dummy variables ๐‘˜ ๐‘› are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 8004 . . . . . . . . 9 0 โˆˆ โ„*
2 1re 7956 . . . . . . . . 9 1 โˆˆ โ„
3 elioc2 9936 . . . . . . . . 9 ((0 โˆˆ โ„* โˆง 1 โˆˆ โ„) โ†’ (๐ด โˆˆ (0(,]1) โ†” (๐ด โˆˆ โ„ โˆง 0 < ๐ด โˆง ๐ด โ‰ค 1)))
41, 2, 3mp2an 426 . . . . . . . 8 (๐ด โˆˆ (0(,]1) โ†” (๐ด โˆˆ โ„ โˆง 0 < ๐ด โˆง ๐ด โ‰ค 1))
54simp1bi 1012 . . . . . . 7 (๐ด โˆˆ (0(,]1) โ†’ ๐ด โˆˆ โ„)
6 eqid 2177 . . . . . . . 8 (๐‘› โˆˆ โ„•0 โ†ฆ (((i ยท ๐ด)โ†‘๐‘›) / (!โ€˜๐‘›))) = (๐‘› โˆˆ โ„•0 โ†ฆ (((i ยท ๐ด)โ†‘๐‘›) / (!โ€˜๐‘›)))
76recos4p 11727 . . . . . . 7 (๐ด โˆˆ โ„ โ†’ (cosโ€˜๐ด) = ((1 โˆ’ ((๐ดโ†‘2) / 2)) + (โ„œโ€˜ฮฃ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜4)((๐‘› โˆˆ โ„•0 โ†ฆ (((i ยท ๐ด)โ†‘๐‘›) / (!โ€˜๐‘›)))โ€˜๐‘˜))))
85, 7syl 14 . . . . . 6 (๐ด โˆˆ (0(,]1) โ†’ (cosโ€˜๐ด) = ((1 โˆ’ ((๐ดโ†‘2) / 2)) + (โ„œโ€˜ฮฃ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜4)((๐‘› โˆˆ โ„•0 โ†ฆ (((i ยท ๐ด)โ†‘๐‘›) / (!โ€˜๐‘›)))โ€˜๐‘˜))))
98eqcomd 2183 . . . . 5 (๐ด โˆˆ (0(,]1) โ†’ ((1 โˆ’ ((๐ดโ†‘2) / 2)) + (โ„œโ€˜ฮฃ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜4)((๐‘› โˆˆ โ„•0 โ†ฆ (((i ยท ๐ด)โ†‘๐‘›) / (!โ€˜๐‘›)))โ€˜๐‘˜))) = (cosโ€˜๐ด))
105recoscld 11732 . . . . . . 7 (๐ด โˆˆ (0(,]1) โ†’ (cosโ€˜๐ด) โˆˆ โ„)
1110recnd 7986 . . . . . 6 (๐ด โˆˆ (0(,]1) โ†’ (cosโ€˜๐ด) โˆˆ โ„‚)
125resqcld 10680 . . . . . . . . 9 (๐ด โˆˆ (0(,]1) โ†’ (๐ดโ†‘2) โˆˆ โ„)
1312rehalfcld 9165 . . . . . . . 8 (๐ด โˆˆ (0(,]1) โ†’ ((๐ดโ†‘2) / 2) โˆˆ โ„)
14 resubcl 8221 . . . . . . . 8 ((1 โˆˆ โ„ โˆง ((๐ดโ†‘2) / 2) โˆˆ โ„) โ†’ (1 โˆ’ ((๐ดโ†‘2) / 2)) โˆˆ โ„)
152, 13, 14sylancr 414 . . . . . . 7 (๐ด โˆˆ (0(,]1) โ†’ (1 โˆ’ ((๐ดโ†‘2) / 2)) โˆˆ โ„)
1615recnd 7986 . . . . . 6 (๐ด โˆˆ (0(,]1) โ†’ (1 โˆ’ ((๐ดโ†‘2) / 2)) โˆˆ โ„‚)
17 ax-icn 7906 . . . . . . . . . 10 i โˆˆ โ„‚
185recnd 7986 . . . . . . . . . 10 (๐ด โˆˆ (0(,]1) โ†’ ๐ด โˆˆ โ„‚)
19 mulcl 7938 . . . . . . . . . 10 ((i โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„‚) โ†’ (i ยท ๐ด) โˆˆ โ„‚)
2017, 18, 19sylancr 414 . . . . . . . . 9 (๐ด โˆˆ (0(,]1) โ†’ (i ยท ๐ด) โˆˆ โ„‚)
21 4nn0 9195 . . . . . . . . 9 4 โˆˆ โ„•0
226eftlcl 11696 . . . . . . . . 9 (((i ยท ๐ด) โˆˆ โ„‚ โˆง 4 โˆˆ โ„•0) โ†’ ฮฃ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜4)((๐‘› โˆˆ โ„•0 โ†ฆ (((i ยท ๐ด)โ†‘๐‘›) / (!โ€˜๐‘›)))โ€˜๐‘˜) โˆˆ โ„‚)
2320, 21, 22sylancl 413 . . . . . . . 8 (๐ด โˆˆ (0(,]1) โ†’ ฮฃ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜4)((๐‘› โˆˆ โ„•0 โ†ฆ (((i ยท ๐ด)โ†‘๐‘›) / (!โ€˜๐‘›)))โ€˜๐‘˜) โˆˆ โ„‚)
2423recld 10947 . . . . . . 7 (๐ด โˆˆ (0(,]1) โ†’ (โ„œโ€˜ฮฃ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜4)((๐‘› โˆˆ โ„•0 โ†ฆ (((i ยท ๐ด)โ†‘๐‘›) / (!โ€˜๐‘›)))โ€˜๐‘˜)) โˆˆ โ„)
2524recnd 7986 . . . . . 6 (๐ด โˆˆ (0(,]1) โ†’ (โ„œโ€˜ฮฃ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜4)((๐‘› โˆˆ โ„•0 โ†ฆ (((i ยท ๐ด)โ†‘๐‘›) / (!โ€˜๐‘›)))โ€˜๐‘˜)) โˆˆ โ„‚)
2611, 16, 25subaddd 8286 . . . . 5 (๐ด โˆˆ (0(,]1) โ†’ (((cosโ€˜๐ด) โˆ’ (1 โˆ’ ((๐ดโ†‘2) / 2))) = (โ„œโ€˜ฮฃ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜4)((๐‘› โˆˆ โ„•0 โ†ฆ (((i ยท ๐ด)โ†‘๐‘›) / (!โ€˜๐‘›)))โ€˜๐‘˜)) โ†” ((1 โˆ’ ((๐ดโ†‘2) / 2)) + (โ„œโ€˜ฮฃ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜4)((๐‘› โˆˆ โ„•0 โ†ฆ (((i ยท ๐ด)โ†‘๐‘›) / (!โ€˜๐‘›)))โ€˜๐‘˜))) = (cosโ€˜๐ด)))
279, 26mpbird 167 . . . 4 (๐ด โˆˆ (0(,]1) โ†’ ((cosโ€˜๐ด) โˆ’ (1 โˆ’ ((๐ดโ†‘2) / 2))) = (โ„œโ€˜ฮฃ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜4)((๐‘› โˆˆ โ„•0 โ†ฆ (((i ยท ๐ด)โ†‘๐‘›) / (!โ€˜๐‘›)))โ€˜๐‘˜)))
2827fveq2d 5520 . . 3 (๐ด โˆˆ (0(,]1) โ†’ (absโ€˜((cosโ€˜๐ด) โˆ’ (1 โˆ’ ((๐ดโ†‘2) / 2)))) = (absโ€˜(โ„œโ€˜ฮฃ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜4)((๐‘› โˆˆ โ„•0 โ†ฆ (((i ยท ๐ด)โ†‘๐‘›) / (!โ€˜๐‘›)))โ€˜๐‘˜))))
2925abscld 11190 . . . 4 (๐ด โˆˆ (0(,]1) โ†’ (absโ€˜(โ„œโ€˜ฮฃ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜4)((๐‘› โˆˆ โ„•0 โ†ฆ (((i ยท ๐ด)โ†‘๐‘›) / (!โ€˜๐‘›)))โ€˜๐‘˜))) โˆˆ โ„)
3023abscld 11190 . . . 4 (๐ด โˆˆ (0(,]1) โ†’ (absโ€˜ฮฃ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜4)((๐‘› โˆˆ โ„•0 โ†ฆ (((i ยท ๐ด)โ†‘๐‘›) / (!โ€˜๐‘›)))โ€˜๐‘˜)) โˆˆ โ„)
31 6nn 9084 . . . . 5 6 โˆˆ โ„•
32 nndivre 8955 . . . . 5 (((๐ดโ†‘2) โˆˆ โ„ โˆง 6 โˆˆ โ„•) โ†’ ((๐ดโ†‘2) / 6) โˆˆ โ„)
3312, 31, 32sylancl 413 . . . 4 (๐ด โˆˆ (0(,]1) โ†’ ((๐ดโ†‘2) / 6) โˆˆ โ„)
34 absrele 11092 . . . . 5 (ฮฃ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜4)((๐‘› โˆˆ โ„•0 โ†ฆ (((i ยท ๐ด)โ†‘๐‘›) / (!โ€˜๐‘›)))โ€˜๐‘˜) โˆˆ โ„‚ โ†’ (absโ€˜(โ„œโ€˜ฮฃ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜4)((๐‘› โˆˆ โ„•0 โ†ฆ (((i ยท ๐ด)โ†‘๐‘›) / (!โ€˜๐‘›)))โ€˜๐‘˜))) โ‰ค (absโ€˜ฮฃ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜4)((๐‘› โˆˆ โ„•0 โ†ฆ (((i ยท ๐ด)โ†‘๐‘›) / (!โ€˜๐‘›)))โ€˜๐‘˜)))
3523, 34syl 14 . . . 4 (๐ด โˆˆ (0(,]1) โ†’ (absโ€˜(โ„œโ€˜ฮฃ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜4)((๐‘› โˆˆ โ„•0 โ†ฆ (((i ยท ๐ด)โ†‘๐‘›) / (!โ€˜๐‘›)))โ€˜๐‘˜))) โ‰ค (absโ€˜ฮฃ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜4)((๐‘› โˆˆ โ„•0 โ†ฆ (((i ยท ๐ด)โ†‘๐‘›) / (!โ€˜๐‘›)))โ€˜๐‘˜)))
36 reexpcl 10537 . . . . . . 7 ((๐ด โˆˆ โ„ โˆง 4 โˆˆ โ„•0) โ†’ (๐ดโ†‘4) โˆˆ โ„)
375, 21, 36sylancl 413 . . . . . 6 (๐ด โˆˆ (0(,]1) โ†’ (๐ดโ†‘4) โˆˆ โ„)
38 nndivre 8955 . . . . . 6 (((๐ดโ†‘4) โˆˆ โ„ โˆง 6 โˆˆ โ„•) โ†’ ((๐ดโ†‘4) / 6) โˆˆ โ„)
3937, 31, 38sylancl 413 . . . . 5 (๐ด โˆˆ (0(,]1) โ†’ ((๐ดโ†‘4) / 6) โˆˆ โ„)
406ef01bndlem 11764 . . . . 5 (๐ด โˆˆ (0(,]1) โ†’ (absโ€˜ฮฃ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜4)((๐‘› โˆˆ โ„•0 โ†ฆ (((i ยท ๐ด)โ†‘๐‘›) / (!โ€˜๐‘›)))โ€˜๐‘˜)) < ((๐ดโ†‘4) / 6))
41 2nn0 9193 . . . . . . . 8 2 โˆˆ โ„•0
4241a1i 9 . . . . . . 7 (๐ด โˆˆ (0(,]1) โ†’ 2 โˆˆ โ„•0)
43 4z 9283 . . . . . . . . 9 4 โˆˆ โ„ค
44 2re 8989 . . . . . . . . . 10 2 โˆˆ โ„
45 4re 8996 . . . . . . . . . 10 4 โˆˆ โ„
46 2lt4 9092 . . . . . . . . . 10 2 < 4
4744, 45, 46ltleii 8060 . . . . . . . . 9 2 โ‰ค 4
48 2z 9281 . . . . . . . . . 10 2 โˆˆ โ„ค
4948eluz1i 9535 . . . . . . . . 9 (4 โˆˆ (โ„คโ‰ฅโ€˜2) โ†” (4 โˆˆ โ„ค โˆง 2 โ‰ค 4))
5043, 47, 49mpbir2an 942 . . . . . . . 8 4 โˆˆ (โ„คโ‰ฅโ€˜2)
5150a1i 9 . . . . . . 7 (๐ด โˆˆ (0(,]1) โ†’ 4 โˆˆ (โ„คโ‰ฅโ€˜2))
524simp2bi 1013 . . . . . . . 8 (๐ด โˆˆ (0(,]1) โ†’ 0 < ๐ด)
53 0re 7957 . . . . . . . . 9 0 โˆˆ โ„
54 ltle 8045 . . . . . . . . 9 ((0 โˆˆ โ„ โˆง ๐ด โˆˆ โ„) โ†’ (0 < ๐ด โ†’ 0 โ‰ค ๐ด))
5553, 5, 54sylancr 414 . . . . . . . 8 (๐ด โˆˆ (0(,]1) โ†’ (0 < ๐ด โ†’ 0 โ‰ค ๐ด))
5652, 55mpd 13 . . . . . . 7 (๐ด โˆˆ (0(,]1) โ†’ 0 โ‰ค ๐ด)
574simp3bi 1014 . . . . . . 7 (๐ด โˆˆ (0(,]1) โ†’ ๐ด โ‰ค 1)
585, 42, 51, 56, 57leexp2rd 10684 . . . . . 6 (๐ด โˆˆ (0(,]1) โ†’ (๐ดโ†‘4) โ‰ค (๐ดโ†‘2))
59 6re 9000 . . . . . . . 8 6 โˆˆ โ„
6059a1i 9 . . . . . . 7 (๐ด โˆˆ (0(,]1) โ†’ 6 โˆˆ โ„)
61 6pos 9020 . . . . . . . 8 0 < 6
6261a1i 9 . . . . . . 7 (๐ด โˆˆ (0(,]1) โ†’ 0 < 6)
63 lediv1 8826 . . . . . . 7 (((๐ดโ†‘4) โˆˆ โ„ โˆง (๐ดโ†‘2) โˆˆ โ„ โˆง (6 โˆˆ โ„ โˆง 0 < 6)) โ†’ ((๐ดโ†‘4) โ‰ค (๐ดโ†‘2) โ†” ((๐ดโ†‘4) / 6) โ‰ค ((๐ดโ†‘2) / 6)))
6437, 12, 60, 62, 63syl112anc 1242 . . . . . 6 (๐ด โˆˆ (0(,]1) โ†’ ((๐ดโ†‘4) โ‰ค (๐ดโ†‘2) โ†” ((๐ดโ†‘4) / 6) โ‰ค ((๐ดโ†‘2) / 6)))
6558, 64mpbid 147 . . . . 5 (๐ด โˆˆ (0(,]1) โ†’ ((๐ดโ†‘4) / 6) โ‰ค ((๐ดโ†‘2) / 6))
6630, 39, 33, 40, 65ltletrd 8380 . . . 4 (๐ด โˆˆ (0(,]1) โ†’ (absโ€˜ฮฃ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜4)((๐‘› โˆˆ โ„•0 โ†ฆ (((i ยท ๐ด)โ†‘๐‘›) / (!โ€˜๐‘›)))โ€˜๐‘˜)) < ((๐ดโ†‘2) / 6))
6729, 30, 33, 35, 66lelttrd 8082 . . 3 (๐ด โˆˆ (0(,]1) โ†’ (absโ€˜(โ„œโ€˜ฮฃ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜4)((๐‘› โˆˆ โ„•0 โ†ฆ (((i ยท ๐ด)โ†‘๐‘›) / (!โ€˜๐‘›)))โ€˜๐‘˜))) < ((๐ดโ†‘2) / 6))
6828, 67eqbrtrd 4026 . 2 (๐ด โˆˆ (0(,]1) โ†’ (absโ€˜((cosโ€˜๐ด) โˆ’ (1 โˆ’ ((๐ดโ†‘2) / 2)))) < ((๐ดโ†‘2) / 6))
6910, 15, 33absdifltd 11187 . . 3 (๐ด โˆˆ (0(,]1) โ†’ ((absโ€˜((cosโ€˜๐ด) โˆ’ (1 โˆ’ ((๐ดโ†‘2) / 2)))) < ((๐ดโ†‘2) / 6) โ†” (((1 โˆ’ ((๐ดโ†‘2) / 2)) โˆ’ ((๐ดโ†‘2) / 6)) < (cosโ€˜๐ด) โˆง (cosโ€˜๐ด) < ((1 โˆ’ ((๐ดโ†‘2) / 2)) + ((๐ดโ†‘2) / 6)))))
70 1cnd 7973 . . . . . . 7 (๐ด โˆˆ (0(,]1) โ†’ 1 โˆˆ โ„‚)
7113recnd 7986 . . . . . . 7 (๐ด โˆˆ (0(,]1) โ†’ ((๐ดโ†‘2) / 2) โˆˆ โ„‚)
7233recnd 7986 . . . . . . 7 (๐ด โˆˆ (0(,]1) โ†’ ((๐ดโ†‘2) / 6) โˆˆ โ„‚)
7370, 71, 72subsub4d 8299 . . . . . 6 (๐ด โˆˆ (0(,]1) โ†’ ((1 โˆ’ ((๐ดโ†‘2) / 2)) โˆ’ ((๐ดโ†‘2) / 6)) = (1 โˆ’ (((๐ดโ†‘2) / 2) + ((๐ดโ†‘2) / 6))))
74 halfpm6th 9139 . . . . . . . . . . 11 (((1 / 2) โˆ’ (1 / 6)) = (1 / 3) โˆง ((1 / 2) + (1 / 6)) = (2 / 3))
7574simpri 113 . . . . . . . . . 10 ((1 / 2) + (1 / 6)) = (2 / 3)
7675oveq2i 5886 . . . . . . . . 9 ((๐ดโ†‘2) ยท ((1 / 2) + (1 / 6))) = ((๐ดโ†‘2) ยท (2 / 3))
7712recnd 7986 . . . . . . . . . 10 (๐ด โˆˆ (0(,]1) โ†’ (๐ดโ†‘2) โˆˆ โ„‚)
78 2cn 8990 . . . . . . . . . . . 12 2 โˆˆ โ„‚
79 2ap0 9012 . . . . . . . . . . . 12 2 # 0
8078, 79recclapi 8699 . . . . . . . . . . 11 (1 / 2) โˆˆ โ„‚
81 6cn 9001 . . . . . . . . . . . 12 6 โˆˆ โ„‚
8231nnap0i 8950 . . . . . . . . . . . 12 6 # 0
8381, 82recclapi 8699 . . . . . . . . . . 11 (1 / 6) โˆˆ โ„‚
84 adddi 7943 . . . . . . . . . . 11 (((๐ดโ†‘2) โˆˆ โ„‚ โˆง (1 / 2) โˆˆ โ„‚ โˆง (1 / 6) โˆˆ โ„‚) โ†’ ((๐ดโ†‘2) ยท ((1 / 2) + (1 / 6))) = (((๐ดโ†‘2) ยท (1 / 2)) + ((๐ดโ†‘2) ยท (1 / 6))))
8580, 83, 84mp3an23 1329 . . . . . . . . . 10 ((๐ดโ†‘2) โˆˆ โ„‚ โ†’ ((๐ดโ†‘2) ยท ((1 / 2) + (1 / 6))) = (((๐ดโ†‘2) ยท (1 / 2)) + ((๐ดโ†‘2) ยท (1 / 6))))
8677, 85syl 14 . . . . . . . . 9 (๐ด โˆˆ (0(,]1) โ†’ ((๐ดโ†‘2) ยท ((1 / 2) + (1 / 6))) = (((๐ดโ†‘2) ยท (1 / 2)) + ((๐ดโ†‘2) ยท (1 / 6))))
8776, 86eqtr3id 2224 . . . . . . . 8 (๐ด โˆˆ (0(,]1) โ†’ ((๐ดโ†‘2) ยท (2 / 3)) = (((๐ดโ†‘2) ยท (1 / 2)) + ((๐ดโ†‘2) ยท (1 / 6))))
88 3cn 8994 . . . . . . . . . . 11 3 โˆˆ โ„‚
89 3ap0 9015 . . . . . . . . . . 11 3 # 0
9088, 89pm3.2i 272 . . . . . . . . . 10 (3 โˆˆ โ„‚ โˆง 3 # 0)
91 div12ap 8651 . . . . . . . . . 10 ((2 โˆˆ โ„‚ โˆง (๐ดโ†‘2) โˆˆ โ„‚ โˆง (3 โˆˆ โ„‚ โˆง 3 # 0)) โ†’ (2 ยท ((๐ดโ†‘2) / 3)) = ((๐ดโ†‘2) ยท (2 / 3)))
9278, 90, 91mp3an13 1328 . . . . . . . . 9 ((๐ดโ†‘2) โˆˆ โ„‚ โ†’ (2 ยท ((๐ดโ†‘2) / 3)) = ((๐ดโ†‘2) ยท (2 / 3)))
9377, 92syl 14 . . . . . . . 8 (๐ด โˆˆ (0(,]1) โ†’ (2 ยท ((๐ดโ†‘2) / 3)) = ((๐ดโ†‘2) ยท (2 / 3)))
94 divrecap 8645 . . . . . . . . . . 11 (((๐ดโ†‘2) โˆˆ โ„‚ โˆง 2 โˆˆ โ„‚ โˆง 2 # 0) โ†’ ((๐ดโ†‘2) / 2) = ((๐ดโ†‘2) ยท (1 / 2)))
9578, 79, 94mp3an23 1329 . . . . . . . . . 10 ((๐ดโ†‘2) โˆˆ โ„‚ โ†’ ((๐ดโ†‘2) / 2) = ((๐ดโ†‘2) ยท (1 / 2)))
9677, 95syl 14 . . . . . . . . 9 (๐ด โˆˆ (0(,]1) โ†’ ((๐ดโ†‘2) / 2) = ((๐ดโ†‘2) ยท (1 / 2)))
97 divrecap 8645 . . . . . . . . . . 11 (((๐ดโ†‘2) โˆˆ โ„‚ โˆง 6 โˆˆ โ„‚ โˆง 6 # 0) โ†’ ((๐ดโ†‘2) / 6) = ((๐ดโ†‘2) ยท (1 / 6)))
9881, 82, 97mp3an23 1329 . . . . . . . . . 10 ((๐ดโ†‘2) โˆˆ โ„‚ โ†’ ((๐ดโ†‘2) / 6) = ((๐ดโ†‘2) ยท (1 / 6)))
9977, 98syl 14 . . . . . . . . 9 (๐ด โˆˆ (0(,]1) โ†’ ((๐ดโ†‘2) / 6) = ((๐ดโ†‘2) ยท (1 / 6)))
10096, 99oveq12d 5893 . . . . . . . 8 (๐ด โˆˆ (0(,]1) โ†’ (((๐ดโ†‘2) / 2) + ((๐ดโ†‘2) / 6)) = (((๐ดโ†‘2) ยท (1 / 2)) + ((๐ดโ†‘2) ยท (1 / 6))))
10187, 93, 1003eqtr4rd 2221 . . . . . . 7 (๐ด โˆˆ (0(,]1) โ†’ (((๐ดโ†‘2) / 2) + ((๐ดโ†‘2) / 6)) = (2 ยท ((๐ดโ†‘2) / 3)))
102101oveq2d 5891 . . . . . 6 (๐ด โˆˆ (0(,]1) โ†’ (1 โˆ’ (((๐ดโ†‘2) / 2) + ((๐ดโ†‘2) / 6))) = (1 โˆ’ (2 ยท ((๐ดโ†‘2) / 3))))
10373, 102eqtrd 2210 . . . . 5 (๐ด โˆˆ (0(,]1) โ†’ ((1 โˆ’ ((๐ดโ†‘2) / 2)) โˆ’ ((๐ดโ†‘2) / 6)) = (1 โˆ’ (2 ยท ((๐ดโ†‘2) / 3))))
104103breq1d 4014 . . . 4 (๐ด โˆˆ (0(,]1) โ†’ (((1 โˆ’ ((๐ดโ†‘2) / 2)) โˆ’ ((๐ดโ†‘2) / 6)) < (cosโ€˜๐ด) โ†” (1 โˆ’ (2 ยท ((๐ดโ†‘2) / 3))) < (cosโ€˜๐ด)))
10570, 71, 72subsubd 8296 . . . . . 6 (๐ด โˆˆ (0(,]1) โ†’ (1 โˆ’ (((๐ดโ†‘2) / 2) โˆ’ ((๐ดโ†‘2) / 6))) = ((1 โˆ’ ((๐ดโ†‘2) / 2)) + ((๐ดโ†‘2) / 6)))
10674simpli 111 . . . . . . . . . 10 ((1 / 2) โˆ’ (1 / 6)) = (1 / 3)
107106oveq2i 5886 . . . . . . . . 9 ((๐ดโ†‘2) ยท ((1 / 2) โˆ’ (1 / 6))) = ((๐ดโ†‘2) ยท (1 / 3))
108 subdi 8342 . . . . . . . . . . 11 (((๐ดโ†‘2) โˆˆ โ„‚ โˆง (1 / 2) โˆˆ โ„‚ โˆง (1 / 6) โˆˆ โ„‚) โ†’ ((๐ดโ†‘2) ยท ((1 / 2) โˆ’ (1 / 6))) = (((๐ดโ†‘2) ยท (1 / 2)) โˆ’ ((๐ดโ†‘2) ยท (1 / 6))))
10980, 83, 108mp3an23 1329 . . . . . . . . . 10 ((๐ดโ†‘2) โˆˆ โ„‚ โ†’ ((๐ดโ†‘2) ยท ((1 / 2) โˆ’ (1 / 6))) = (((๐ดโ†‘2) ยท (1 / 2)) โˆ’ ((๐ดโ†‘2) ยท (1 / 6))))
11077, 109syl 14 . . . . . . . . 9 (๐ด โˆˆ (0(,]1) โ†’ ((๐ดโ†‘2) ยท ((1 / 2) โˆ’ (1 / 6))) = (((๐ดโ†‘2) ยท (1 / 2)) โˆ’ ((๐ดโ†‘2) ยท (1 / 6))))
111107, 110eqtr3id 2224 . . . . . . . 8 (๐ด โˆˆ (0(,]1) โ†’ ((๐ดโ†‘2) ยท (1 / 3)) = (((๐ดโ†‘2) ยท (1 / 2)) โˆ’ ((๐ดโ†‘2) ยท (1 / 6))))
112 divrecap 8645 . . . . . . . . . 10 (((๐ดโ†‘2) โˆˆ โ„‚ โˆง 3 โˆˆ โ„‚ โˆง 3 # 0) โ†’ ((๐ดโ†‘2) / 3) = ((๐ดโ†‘2) ยท (1 / 3)))
11388, 89, 112mp3an23 1329 . . . . . . . . 9 ((๐ดโ†‘2) โˆˆ โ„‚ โ†’ ((๐ดโ†‘2) / 3) = ((๐ดโ†‘2) ยท (1 / 3)))
11477, 113syl 14 . . . . . . . 8 (๐ด โˆˆ (0(,]1) โ†’ ((๐ดโ†‘2) / 3) = ((๐ดโ†‘2) ยท (1 / 3)))
11596, 99oveq12d 5893 . . . . . . . 8 (๐ด โˆˆ (0(,]1) โ†’ (((๐ดโ†‘2) / 2) โˆ’ ((๐ดโ†‘2) / 6)) = (((๐ดโ†‘2) ยท (1 / 2)) โˆ’ ((๐ดโ†‘2) ยท (1 / 6))))
116111, 114, 1153eqtr4rd 2221 . . . . . . 7 (๐ด โˆˆ (0(,]1) โ†’ (((๐ดโ†‘2) / 2) โˆ’ ((๐ดโ†‘2) / 6)) = ((๐ดโ†‘2) / 3))
117116oveq2d 5891 . . . . . 6 (๐ด โˆˆ (0(,]1) โ†’ (1 โˆ’ (((๐ดโ†‘2) / 2) โˆ’ ((๐ดโ†‘2) / 6))) = (1 โˆ’ ((๐ดโ†‘2) / 3)))
118105, 117eqtr3d 2212 . . . . 5 (๐ด โˆˆ (0(,]1) โ†’ ((1 โˆ’ ((๐ดโ†‘2) / 2)) + ((๐ดโ†‘2) / 6)) = (1 โˆ’ ((๐ดโ†‘2) / 3)))
119118breq2d 4016 . . . 4 (๐ด โˆˆ (0(,]1) โ†’ ((cosโ€˜๐ด) < ((1 โˆ’ ((๐ดโ†‘2) / 2)) + ((๐ดโ†‘2) / 6)) โ†” (cosโ€˜๐ด) < (1 โˆ’ ((๐ดโ†‘2) / 3))))
120104, 119anbi12d 473 . . 3 (๐ด โˆˆ (0(,]1) โ†’ ((((1 โˆ’ ((๐ดโ†‘2) / 2)) โˆ’ ((๐ดโ†‘2) / 6)) < (cosโ€˜๐ด) โˆง (cosโ€˜๐ด) < ((1 โˆ’ ((๐ดโ†‘2) / 2)) + ((๐ดโ†‘2) / 6))) โ†” ((1 โˆ’ (2 ยท ((๐ดโ†‘2) / 3))) < (cosโ€˜๐ด) โˆง (cosโ€˜๐ด) < (1 โˆ’ ((๐ดโ†‘2) / 3)))))
12169, 120bitrd 188 . 2 (๐ด โˆˆ (0(,]1) โ†’ ((absโ€˜((cosโ€˜๐ด) โˆ’ (1 โˆ’ ((๐ดโ†‘2) / 2)))) < ((๐ดโ†‘2) / 6) โ†” ((1 โˆ’ (2 ยท ((๐ดโ†‘2) / 3))) < (cosโ€˜๐ด) โˆง (cosโ€˜๐ด) < (1 โˆ’ ((๐ดโ†‘2) / 3)))))
12268, 121mpbid 147 1 (๐ด โˆˆ (0(,]1) โ†’ ((1 โˆ’ (2 ยท ((๐ดโ†‘2) / 3))) < (cosโ€˜๐ด) โˆง (cosโ€˜๐ด) < (1 โˆ’ ((๐ดโ†‘2) / 3))))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โ†” wb 105   โˆง w3a 978   = wceq 1353   โˆˆ wcel 2148   class class class wbr 4004   โ†ฆ cmpt 4065  โ€˜cfv 5217  (class class class)co 5875  โ„‚cc 7809  โ„cr 7810  0cc0 7811  1c1 7812  ici 7813   + caddc 7814   ยท cmul 7816  โ„*cxr 7991   < clt 7992   โ‰ค cle 7993   โˆ’ cmin 8128   # cap 8538   / cdiv 8629  โ„•cn 8919  2c2 8970  3c3 8971  4c4 8972  6c6 8974  โ„•0cn0 9176  โ„คcz 9253  โ„คโ‰ฅcuz 9528  (,]cioc 9889  โ†‘cexp 10519  !cfa 10705  โ„œcre 10849  abscabs 11006  ฮฃcsu 11361  cosccos 11653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-frec 6392  df-1o 6417  df-oadd 6421  df-er 6535  df-en 6741  df-dom 6742  df-fin 6743  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-5 8981  df-6 8982  df-7 8983  df-8 8984  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-ioc 9893  df-ico 9894  df-fz 10009  df-fzo 10143  df-seqfrec 10446  df-exp 10520  df-fac 10706  df-ihash 10756  df-shft 10824  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287  df-sumdc 11362  df-ef 11656  df-cos 11659
This theorem is referenced by:  cos1bnd  11767  cos01gt0  11770  tangtx  14262
  Copyright terms: Public domain W3C validator