ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos01bnd GIF version

Theorem cos01bnd 11501
Description: Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
cos01bnd (𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3))))

Proof of Theorem cos01bnd
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 7836 . . . . . . . . 9 0 ∈ ℝ*
2 1re 7789 . . . . . . . . 9 1 ∈ ℝ
3 elioc2 9749 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1)))
41, 2, 3mp2an 423 . . . . . . . 8 (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1))
54simp1bi 997 . . . . . . 7 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℝ)
6 eqid 2140 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
76recos4p 11462 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
85, 7syl 14 . . . . . 6 (𝐴 ∈ (0(,]1) → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
98eqcomd 2146 . . . . 5 (𝐴 ∈ (0(,]1) → ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) = (cos‘𝐴))
105recoscld 11467 . . . . . . 7 (𝐴 ∈ (0(,]1) → (cos‘𝐴) ∈ ℝ)
1110recnd 7818 . . . . . 6 (𝐴 ∈ (0(,]1) → (cos‘𝐴) ∈ ℂ)
125resqcld 10481 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈ ℝ)
1312rehalfcld 8990 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 2) ∈ ℝ)
14 resubcl 8050 . . . . . . . 8 ((1 ∈ ℝ ∧ ((𝐴↑2) / 2) ∈ ℝ) → (1 − ((𝐴↑2) / 2)) ∈ ℝ)
152, 13, 14sylancr 411 . . . . . . 7 (𝐴 ∈ (0(,]1) → (1 − ((𝐴↑2) / 2)) ∈ ℝ)
1615recnd 7818 . . . . . 6 (𝐴 ∈ (0(,]1) → (1 − ((𝐴↑2) / 2)) ∈ ℂ)
17 ax-icn 7739 . . . . . . . . . 10 i ∈ ℂ
185recnd 7818 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℂ)
19 mulcl 7771 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
2017, 18, 19sylancr 411 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → (i · 𝐴) ∈ ℂ)
21 4nn0 9020 . . . . . . . . 9 4 ∈ ℕ0
226eftlcl 11431 . . . . . . . . 9 (((i · 𝐴) ∈ ℂ ∧ 4 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
2320, 21, 22sylancl 410 . . . . . . . 8 (𝐴 ∈ (0(,]1) → Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
2423recld 10742 . . . . . . 7 (𝐴 ∈ (0(,]1) → (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ)
2524recnd 7818 . . . . . 6 (𝐴 ∈ (0(,]1) → (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℂ)
2611, 16, 25subaddd 8115 . . . . 5 (𝐴 ∈ (0(,]1) → (((cos‘𝐴) − (1 − ((𝐴↑2) / 2))) = (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ↔ ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) = (cos‘𝐴)))
279, 26mpbird 166 . . . 4 (𝐴 ∈ (0(,]1) → ((cos‘𝐴) − (1 − ((𝐴↑2) / 2))) = (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
2827fveq2d 5433 . . 3 (𝐴 ∈ (0(,]1) → (abs‘((cos‘𝐴) − (1 − ((𝐴↑2) / 2)))) = (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
2925abscld 10985 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ∈ ℝ)
3023abscld 10985 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ)
31 6nn 8909 . . . . 5 6 ∈ ℕ
32 nndivre 8780 . . . . 5 (((𝐴↑2) ∈ ℝ ∧ 6 ∈ ℕ) → ((𝐴↑2) / 6) ∈ ℝ)
3312, 31, 32sylancl 410 . . . 4 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 6) ∈ ℝ)
34 absrele 10887 . . . . 5 𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ → (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
3523, 34syl 14 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
36 reexpcl 10341 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℝ)
375, 21, 36sylancl 410 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑4) ∈ ℝ)
38 nndivre 8780 . . . . . 6 (((𝐴↑4) ∈ ℝ ∧ 6 ∈ ℕ) → ((𝐴↑4) / 6) ∈ ℝ)
3937, 31, 38sylancl 410 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ∈ ℝ)
406ef01bndlem 11499 . . . . 5 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑4) / 6))
41 2nn0 9018 . . . . . . . 8 2 ∈ ℕ0
4241a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 2 ∈ ℕ0)
43 4z 9108 . . . . . . . . 9 4 ∈ ℤ
44 2re 8814 . . . . . . . . . 10 2 ∈ ℝ
45 4re 8821 . . . . . . . . . 10 4 ∈ ℝ
46 2lt4 8917 . . . . . . . . . 10 2 < 4
4744, 45, 46ltleii 7890 . . . . . . . . 9 2 ≤ 4
48 2z 9106 . . . . . . . . . 10 2 ∈ ℤ
4948eluz1i 9357 . . . . . . . . 9 (4 ∈ (ℤ‘2) ↔ (4 ∈ ℤ ∧ 2 ≤ 4))
5043, 47, 49mpbir2an 927 . . . . . . . 8 4 ∈ (ℤ‘2)
5150a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 4 ∈ (ℤ‘2))
524simp2bi 998 . . . . . . . 8 (𝐴 ∈ (0(,]1) → 0 < 𝐴)
53 0re 7790 . . . . . . . . 9 0 ∈ ℝ
54 ltle 7875 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
5553, 5, 54sylancr 411 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (0 < 𝐴 → 0 ≤ 𝐴))
5652, 55mpd 13 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 ≤ 𝐴)
574simp3bi 999 . . . . . . 7 (𝐴 ∈ (0(,]1) → 𝐴 ≤ 1)
585, 42, 51, 56, 57leexp2rd 10485 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑4) ≤ (𝐴↑2))
59 6re 8825 . . . . . . . 8 6 ∈ ℝ
6059a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 6 ∈ ℝ)
61 6pos 8845 . . . . . . . 8 0 < 6
6261a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 < 6)
63 lediv1 8651 . . . . . . 7 (((𝐴↑4) ∈ ℝ ∧ (𝐴↑2) ∈ ℝ ∧ (6 ∈ ℝ ∧ 0 < 6)) → ((𝐴↑4) ≤ (𝐴↑2) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑2) / 6)))
6437, 12, 60, 62, 63syl112anc 1221 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑4) ≤ (𝐴↑2) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑2) / 6)))
6558, 64mpbid 146 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ≤ ((𝐴↑2) / 6))
6630, 39, 33, 40, 65ltletrd 8209 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑2) / 6))
6729, 30, 33, 35, 66lelttrd 7911 . . 3 (𝐴 ∈ (0(,]1) → (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) < ((𝐴↑2) / 6))
6828, 67eqbrtrd 3958 . 2 (𝐴 ∈ (0(,]1) → (abs‘((cos‘𝐴) − (1 − ((𝐴↑2) / 2)))) < ((𝐴↑2) / 6))
6910, 15, 33absdifltd 10982 . . 3 (𝐴 ∈ (0(,]1) → ((abs‘((cos‘𝐴) − (1 − ((𝐴↑2) / 2)))) < ((𝐴↑2) / 6) ↔ (((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) < (cos‘𝐴) ∧ (cos‘𝐴) < ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6)))))
70 1cnd 7806 . . . . . . 7 (𝐴 ∈ (0(,]1) → 1 ∈ ℂ)
7113recnd 7818 . . . . . . 7 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 2) ∈ ℂ)
7233recnd 7818 . . . . . . 7 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 6) ∈ ℂ)
7370, 71, 72subsub4d 8128 . . . . . 6 (𝐴 ∈ (0(,]1) → ((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) = (1 − (((𝐴↑2) / 2) + ((𝐴↑2) / 6))))
74 halfpm6th 8964 . . . . . . . . . . 11 (((1 / 2) − (1 / 6)) = (1 / 3) ∧ ((1 / 2) + (1 / 6)) = (2 / 3))
7574simpri 112 . . . . . . . . . 10 ((1 / 2) + (1 / 6)) = (2 / 3)
7675oveq2i 5793 . . . . . . . . 9 ((𝐴↑2) · ((1 / 2) + (1 / 6))) = ((𝐴↑2) · (2 / 3))
7712recnd 7818 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈ ℂ)
78 2cn 8815 . . . . . . . . . . . 12 2 ∈ ℂ
79 2ap0 8837 . . . . . . . . . . . 12 2 # 0
8078, 79recclapi 8526 . . . . . . . . . . 11 (1 / 2) ∈ ℂ
81 6cn 8826 . . . . . . . . . . . 12 6 ∈ ℂ
8231nnap0i 8775 . . . . . . . . . . . 12 6 # 0
8381, 82recclapi 8526 . . . . . . . . . . 11 (1 / 6) ∈ ℂ
84 adddi 7776 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((𝐴↑2) · ((1 / 2) + (1 / 6))) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
8580, 83, 84mp3an23 1308 . . . . . . . . . 10 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) · ((1 / 2) + (1 / 6))) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
8677, 85syl 14 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · ((1 / 2) + (1 / 6))) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
8776, 86syl5eqr 2187 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (2 / 3)) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
88 3cn 8819 . . . . . . . . . . 11 3 ∈ ℂ
89 3ap0 8840 . . . . . . . . . . 11 3 # 0
9088, 89pm3.2i 270 . . . . . . . . . 10 (3 ∈ ℂ ∧ 3 # 0)
91 div12ap 8478 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 # 0)) → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
9278, 90, 91mp3an13 1307 . . . . . . . . 9 ((𝐴↑2) ∈ ℂ → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
9377, 92syl 14 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
94 divrecap 8472 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → ((𝐴↑2) / 2) = ((𝐴↑2) · (1 / 2)))
9578, 79, 94mp3an23 1308 . . . . . . . . . 10 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) / 2) = ((𝐴↑2) · (1 / 2)))
9677, 95syl 14 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 2) = ((𝐴↑2) · (1 / 2)))
97 divrecap 8472 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 # 0) → ((𝐴↑2) / 6) = ((𝐴↑2) · (1 / 6)))
9881, 82, 97mp3an23 1308 . . . . . . . . . 10 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) / 6) = ((𝐴↑2) · (1 / 6)))
9977, 98syl 14 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 6) = ((𝐴↑2) · (1 / 6)))
10096, 99oveq12d 5800 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) + ((𝐴↑2) / 6)) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
10187, 93, 1003eqtr4rd 2184 . . . . . . 7 (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) + ((𝐴↑2) / 6)) = (2 · ((𝐴↑2) / 3)))
102101oveq2d 5798 . . . . . 6 (𝐴 ∈ (0(,]1) → (1 − (((𝐴↑2) / 2) + ((𝐴↑2) / 6))) = (1 − (2 · ((𝐴↑2) / 3))))
10373, 102eqtrd 2173 . . . . 5 (𝐴 ∈ (0(,]1) → ((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) = (1 − (2 · ((𝐴↑2) / 3))))
104103breq1d 3947 . . . 4 (𝐴 ∈ (0(,]1) → (((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) < (cos‘𝐴) ↔ (1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴)))
10570, 71, 72subsubd 8125 . . . . . 6 (𝐴 ∈ (0(,]1) → (1 − (((𝐴↑2) / 2) − ((𝐴↑2) / 6))) = ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6)))
10674simpli 110 . . . . . . . . . 10 ((1 / 2) − (1 / 6)) = (1 / 3)
107106oveq2i 5793 . . . . . . . . 9 ((𝐴↑2) · ((1 / 2) − (1 / 6))) = ((𝐴↑2) · (1 / 3))
108 subdi 8171 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((𝐴↑2) · ((1 / 2) − (1 / 6))) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
10980, 83, 108mp3an23 1308 . . . . . . . . . 10 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) · ((1 / 2) − (1 / 6))) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
11077, 109syl 14 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · ((1 / 2) − (1 / 6))) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
111107, 110syl5eqr 2187 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (1 / 3)) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
112 divrecap 8472 . . . . . . . . . 10 (((𝐴↑2) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 # 0) → ((𝐴↑2) / 3) = ((𝐴↑2) · (1 / 3)))
11388, 89, 112mp3an23 1308 . . . . . . . . 9 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) / 3) = ((𝐴↑2) · (1 / 3)))
11477, 113syl 14 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 3) = ((𝐴↑2) · (1 / 3)))
11596, 99oveq12d 5800 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) − ((𝐴↑2) / 6)) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
116111, 114, 1153eqtr4rd 2184 . . . . . . 7 (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) − ((𝐴↑2) / 6)) = ((𝐴↑2) / 3))
117116oveq2d 5798 . . . . . 6 (𝐴 ∈ (0(,]1) → (1 − (((𝐴↑2) / 2) − ((𝐴↑2) / 6))) = (1 − ((𝐴↑2) / 3)))
118105, 117eqtr3d 2175 . . . . 5 (𝐴 ∈ (0(,]1) → ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6)) = (1 − ((𝐴↑2) / 3)))
119118breq2d 3949 . . . 4 (𝐴 ∈ (0(,]1) → ((cos‘𝐴) < ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6)) ↔ (cos‘𝐴) < (1 − ((𝐴↑2) / 3))))
120104, 119anbi12d 465 . . 3 (𝐴 ∈ (0(,]1) → ((((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) < (cos‘𝐴) ∧ (cos‘𝐴) < ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6))) ↔ ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3)))))
12169, 120bitrd 187 . 2 (𝐴 ∈ (0(,]1) → ((abs‘((cos‘𝐴) − (1 − ((𝐴↑2) / 2)))) < ((𝐴↑2) / 6) ↔ ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3)))))
12268, 121mpbid 146 1 (𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481   class class class wbr 3937  cmpt 3997  cfv 5131  (class class class)co 5782  cc 7642  cr 7643  0cc0 7644  1c1 7645  ici 7646   + caddc 7647   · cmul 7649  *cxr 7823   < clt 7824  cle 7825  cmin 7957   # cap 8367   / cdiv 8456  cn 8744  2c2 8795  3c3 8796  4c4 8797  6c6 8799  0cn0 9001  cz 9078  cuz 9350  (,]cioc 9702  cexp 10323  !cfa 10503  cre 10644  abscabs 10801  Σcsu 11154  cosccos 11388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-5 8806  df-6 8807  df-7 8808  df-8 8809  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-ioc 9706  df-ico 9707  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-ihash 10554  df-shft 10619  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155  df-ef 11391  df-cos 11394
This theorem is referenced by:  cos1bnd  11502  cos01gt0  11505  tangtx  12967
  Copyright terms: Public domain W3C validator