ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos01bnd GIF version

Theorem cos01bnd 11686
Description: Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
cos01bnd (𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3))))

Proof of Theorem cos01bnd
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 7937 . . . . . . . . 9 0 ∈ ℝ*
2 1re 7890 . . . . . . . . 9 1 ∈ ℝ
3 elioc2 9864 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1)))
41, 2, 3mp2an 423 . . . . . . . 8 (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1))
54simp1bi 1001 . . . . . . 7 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℝ)
6 eqid 2164 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
76recos4p 11647 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
85, 7syl 14 . . . . . 6 (𝐴 ∈ (0(,]1) → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
98eqcomd 2170 . . . . 5 (𝐴 ∈ (0(,]1) → ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) = (cos‘𝐴))
105recoscld 11652 . . . . . . 7 (𝐴 ∈ (0(,]1) → (cos‘𝐴) ∈ ℝ)
1110recnd 7919 . . . . . 6 (𝐴 ∈ (0(,]1) → (cos‘𝐴) ∈ ℂ)
125resqcld 10604 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈ ℝ)
1312rehalfcld 9095 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 2) ∈ ℝ)
14 resubcl 8154 . . . . . . . 8 ((1 ∈ ℝ ∧ ((𝐴↑2) / 2) ∈ ℝ) → (1 − ((𝐴↑2) / 2)) ∈ ℝ)
152, 13, 14sylancr 411 . . . . . . 7 (𝐴 ∈ (0(,]1) → (1 − ((𝐴↑2) / 2)) ∈ ℝ)
1615recnd 7919 . . . . . 6 (𝐴 ∈ (0(,]1) → (1 − ((𝐴↑2) / 2)) ∈ ℂ)
17 ax-icn 7840 . . . . . . . . . 10 i ∈ ℂ
185recnd 7919 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℂ)
19 mulcl 7872 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
2017, 18, 19sylancr 411 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → (i · 𝐴) ∈ ℂ)
21 4nn0 9125 . . . . . . . . 9 4 ∈ ℕ0
226eftlcl 11616 . . . . . . . . 9 (((i · 𝐴) ∈ ℂ ∧ 4 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
2320, 21, 22sylancl 410 . . . . . . . 8 (𝐴 ∈ (0(,]1) → Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
2423recld 10867 . . . . . . 7 (𝐴 ∈ (0(,]1) → (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ)
2524recnd 7919 . . . . . 6 (𝐴 ∈ (0(,]1) → (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℂ)
2611, 16, 25subaddd 8219 . . . . 5 (𝐴 ∈ (0(,]1) → (((cos‘𝐴) − (1 − ((𝐴↑2) / 2))) = (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ↔ ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) = (cos‘𝐴)))
279, 26mpbird 166 . . . 4 (𝐴 ∈ (0(,]1) → ((cos‘𝐴) − (1 − ((𝐴↑2) / 2))) = (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
2827fveq2d 5485 . . 3 (𝐴 ∈ (0(,]1) → (abs‘((cos‘𝐴) − (1 − ((𝐴↑2) / 2)))) = (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
2925abscld 11110 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ∈ ℝ)
3023abscld 11110 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ)
31 6nn 9014 . . . . 5 6 ∈ ℕ
32 nndivre 8885 . . . . 5 (((𝐴↑2) ∈ ℝ ∧ 6 ∈ ℕ) → ((𝐴↑2) / 6) ∈ ℝ)
3312, 31, 32sylancl 410 . . . 4 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 6) ∈ ℝ)
34 absrele 11012 . . . . 5 𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ → (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
3523, 34syl 14 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
36 reexpcl 10463 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℝ)
375, 21, 36sylancl 410 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑4) ∈ ℝ)
38 nndivre 8885 . . . . . 6 (((𝐴↑4) ∈ ℝ ∧ 6 ∈ ℕ) → ((𝐴↑4) / 6) ∈ ℝ)
3937, 31, 38sylancl 410 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ∈ ℝ)
406ef01bndlem 11684 . . . . 5 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑4) / 6))
41 2nn0 9123 . . . . . . . 8 2 ∈ ℕ0
4241a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 2 ∈ ℕ0)
43 4z 9213 . . . . . . . . 9 4 ∈ ℤ
44 2re 8919 . . . . . . . . . 10 2 ∈ ℝ
45 4re 8926 . . . . . . . . . 10 4 ∈ ℝ
46 2lt4 9022 . . . . . . . . . 10 2 < 4
4744, 45, 46ltleii 7993 . . . . . . . . 9 2 ≤ 4
48 2z 9211 . . . . . . . . . 10 2 ∈ ℤ
4948eluz1i 9465 . . . . . . . . 9 (4 ∈ (ℤ‘2) ↔ (4 ∈ ℤ ∧ 2 ≤ 4))
5043, 47, 49mpbir2an 931 . . . . . . . 8 4 ∈ (ℤ‘2)
5150a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 4 ∈ (ℤ‘2))
524simp2bi 1002 . . . . . . . 8 (𝐴 ∈ (0(,]1) → 0 < 𝐴)
53 0re 7891 . . . . . . . . 9 0 ∈ ℝ
54 ltle 7978 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
5553, 5, 54sylancr 411 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (0 < 𝐴 → 0 ≤ 𝐴))
5652, 55mpd 13 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 ≤ 𝐴)
574simp3bi 1003 . . . . . . 7 (𝐴 ∈ (0(,]1) → 𝐴 ≤ 1)
585, 42, 51, 56, 57leexp2rd 10608 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑4) ≤ (𝐴↑2))
59 6re 8930 . . . . . . . 8 6 ∈ ℝ
6059a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 6 ∈ ℝ)
61 6pos 8950 . . . . . . . 8 0 < 6
6261a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 < 6)
63 lediv1 8756 . . . . . . 7 (((𝐴↑4) ∈ ℝ ∧ (𝐴↑2) ∈ ℝ ∧ (6 ∈ ℝ ∧ 0 < 6)) → ((𝐴↑4) ≤ (𝐴↑2) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑2) / 6)))
6437, 12, 60, 62, 63syl112anc 1231 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑4) ≤ (𝐴↑2) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑2) / 6)))
6558, 64mpbid 146 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ≤ ((𝐴↑2) / 6))
6630, 39, 33, 40, 65ltletrd 8313 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑2) / 6))
6729, 30, 33, 35, 66lelttrd 8015 . . 3 (𝐴 ∈ (0(,]1) → (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) < ((𝐴↑2) / 6))
6828, 67eqbrtrd 3999 . 2 (𝐴 ∈ (0(,]1) → (abs‘((cos‘𝐴) − (1 − ((𝐴↑2) / 2)))) < ((𝐴↑2) / 6))
6910, 15, 33absdifltd 11107 . . 3 (𝐴 ∈ (0(,]1) → ((abs‘((cos‘𝐴) − (1 − ((𝐴↑2) / 2)))) < ((𝐴↑2) / 6) ↔ (((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) < (cos‘𝐴) ∧ (cos‘𝐴) < ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6)))))
70 1cnd 7907 . . . . . . 7 (𝐴 ∈ (0(,]1) → 1 ∈ ℂ)
7113recnd 7919 . . . . . . 7 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 2) ∈ ℂ)
7233recnd 7919 . . . . . . 7 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 6) ∈ ℂ)
7370, 71, 72subsub4d 8232 . . . . . 6 (𝐴 ∈ (0(,]1) → ((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) = (1 − (((𝐴↑2) / 2) + ((𝐴↑2) / 6))))
74 halfpm6th 9069 . . . . . . . . . . 11 (((1 / 2) − (1 / 6)) = (1 / 3) ∧ ((1 / 2) + (1 / 6)) = (2 / 3))
7574simpri 112 . . . . . . . . . 10 ((1 / 2) + (1 / 6)) = (2 / 3)
7675oveq2i 5848 . . . . . . . . 9 ((𝐴↑2) · ((1 / 2) + (1 / 6))) = ((𝐴↑2) · (2 / 3))
7712recnd 7919 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈ ℂ)
78 2cn 8920 . . . . . . . . . . . 12 2 ∈ ℂ
79 2ap0 8942 . . . . . . . . . . . 12 2 # 0
8078, 79recclapi 8630 . . . . . . . . . . 11 (1 / 2) ∈ ℂ
81 6cn 8931 . . . . . . . . . . . 12 6 ∈ ℂ
8231nnap0i 8880 . . . . . . . . . . . 12 6 # 0
8381, 82recclapi 8630 . . . . . . . . . . 11 (1 / 6) ∈ ℂ
84 adddi 7877 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((𝐴↑2) · ((1 / 2) + (1 / 6))) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
8580, 83, 84mp3an23 1318 . . . . . . . . . 10 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) · ((1 / 2) + (1 / 6))) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
8677, 85syl 14 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · ((1 / 2) + (1 / 6))) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
8776, 86eqtr3id 2211 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (2 / 3)) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
88 3cn 8924 . . . . . . . . . . 11 3 ∈ ℂ
89 3ap0 8945 . . . . . . . . . . 11 3 # 0
9088, 89pm3.2i 270 . . . . . . . . . 10 (3 ∈ ℂ ∧ 3 # 0)
91 div12ap 8582 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 # 0)) → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
9278, 90, 91mp3an13 1317 . . . . . . . . 9 ((𝐴↑2) ∈ ℂ → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
9377, 92syl 14 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
94 divrecap 8576 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → ((𝐴↑2) / 2) = ((𝐴↑2) · (1 / 2)))
9578, 79, 94mp3an23 1318 . . . . . . . . . 10 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) / 2) = ((𝐴↑2) · (1 / 2)))
9677, 95syl 14 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 2) = ((𝐴↑2) · (1 / 2)))
97 divrecap 8576 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 # 0) → ((𝐴↑2) / 6) = ((𝐴↑2) · (1 / 6)))
9881, 82, 97mp3an23 1318 . . . . . . . . . 10 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) / 6) = ((𝐴↑2) · (1 / 6)))
9977, 98syl 14 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 6) = ((𝐴↑2) · (1 / 6)))
10096, 99oveq12d 5855 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) + ((𝐴↑2) / 6)) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
10187, 93, 1003eqtr4rd 2208 . . . . . . 7 (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) + ((𝐴↑2) / 6)) = (2 · ((𝐴↑2) / 3)))
102101oveq2d 5853 . . . . . 6 (𝐴 ∈ (0(,]1) → (1 − (((𝐴↑2) / 2) + ((𝐴↑2) / 6))) = (1 − (2 · ((𝐴↑2) / 3))))
10373, 102eqtrd 2197 . . . . 5 (𝐴 ∈ (0(,]1) → ((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) = (1 − (2 · ((𝐴↑2) / 3))))
104103breq1d 3987 . . . 4 (𝐴 ∈ (0(,]1) → (((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) < (cos‘𝐴) ↔ (1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴)))
10570, 71, 72subsubd 8229 . . . . . 6 (𝐴 ∈ (0(,]1) → (1 − (((𝐴↑2) / 2) − ((𝐴↑2) / 6))) = ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6)))
10674simpli 110 . . . . . . . . . 10 ((1 / 2) − (1 / 6)) = (1 / 3)
107106oveq2i 5848 . . . . . . . . 9 ((𝐴↑2) · ((1 / 2) − (1 / 6))) = ((𝐴↑2) · (1 / 3))
108 subdi 8275 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((𝐴↑2) · ((1 / 2) − (1 / 6))) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
10980, 83, 108mp3an23 1318 . . . . . . . . . 10 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) · ((1 / 2) − (1 / 6))) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
11077, 109syl 14 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · ((1 / 2) − (1 / 6))) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
111107, 110eqtr3id 2211 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (1 / 3)) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
112 divrecap 8576 . . . . . . . . . 10 (((𝐴↑2) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 # 0) → ((𝐴↑2) / 3) = ((𝐴↑2) · (1 / 3)))
11388, 89, 112mp3an23 1318 . . . . . . . . 9 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) / 3) = ((𝐴↑2) · (1 / 3)))
11477, 113syl 14 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 3) = ((𝐴↑2) · (1 / 3)))
11596, 99oveq12d 5855 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) − ((𝐴↑2) / 6)) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
116111, 114, 1153eqtr4rd 2208 . . . . . . 7 (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) − ((𝐴↑2) / 6)) = ((𝐴↑2) / 3))
117116oveq2d 5853 . . . . . 6 (𝐴 ∈ (0(,]1) → (1 − (((𝐴↑2) / 2) − ((𝐴↑2) / 6))) = (1 − ((𝐴↑2) / 3)))
118105, 117eqtr3d 2199 . . . . 5 (𝐴 ∈ (0(,]1) → ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6)) = (1 − ((𝐴↑2) / 3)))
119118breq2d 3989 . . . 4 (𝐴 ∈ (0(,]1) → ((cos‘𝐴) < ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6)) ↔ (cos‘𝐴) < (1 − ((𝐴↑2) / 3))))
120104, 119anbi12d 465 . . 3 (𝐴 ∈ (0(,]1) → ((((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) < (cos‘𝐴) ∧ (cos‘𝐴) < ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6))) ↔ ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3)))))
12169, 120bitrd 187 . 2 (𝐴 ∈ (0(,]1) → ((abs‘((cos‘𝐴) − (1 − ((𝐴↑2) / 2)))) < ((𝐴↑2) / 6) ↔ ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3)))))
12268, 121mpbid 146 1 (𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 967   = wceq 1342  wcel 2135   class class class wbr 3977  cmpt 4038  cfv 5183  (class class class)co 5837  cc 7743  cr 7744  0cc0 7745  1c1 7746  ici 7747   + caddc 7748   · cmul 7750  *cxr 7924   < clt 7925  cle 7926  cmin 8061   # cap 8471   / cdiv 8560  cn 8849  2c2 8900  3c3 8901  4c4 8902  6c6 8904  0cn0 9106  cz 9183  cuz 9458  (,]cioc 9817  cexp 10445  !cfa 10628  cre 10769  abscabs 10926  Σcsu 11281  cosccos 11573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4092  ax-sep 4095  ax-nul 4103  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-iinf 4560  ax-cnex 7836  ax-resscn 7837  ax-1cn 7838  ax-1re 7839  ax-icn 7840  ax-addcl 7841  ax-addrcl 7842  ax-mulcl 7843  ax-mulrcl 7844  ax-addcom 7845  ax-mulcom 7846  ax-addass 7847  ax-mulass 7848  ax-distr 7849  ax-i2m1 7850  ax-0lt1 7851  ax-1rid 7852  ax-0id 7853  ax-rnegex 7854  ax-precex 7855  ax-cnre 7856  ax-pre-ltirr 7857  ax-pre-ltwlin 7858  ax-pre-lttrn 7859  ax-pre-apti 7860  ax-pre-ltadd 7861  ax-pre-mulgt0 7862  ax-pre-mulext 7863  ax-arch 7864  ax-caucvg 7865
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2724  df-sbc 2948  df-csb 3042  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-nul 3406  df-if 3517  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-int 3820  df-iun 3863  df-br 3978  df-opab 4039  df-mpt 4040  df-tr 4076  df-id 4266  df-po 4269  df-iso 4270  df-iord 4339  df-on 4341  df-ilim 4342  df-suc 4344  df-iom 4563  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-f1 5188  df-fo 5189  df-f1o 5190  df-fv 5191  df-isom 5192  df-riota 5793  df-ov 5840  df-oprab 5841  df-mpo 5842  df-1st 6101  df-2nd 6102  df-recs 6265  df-irdg 6330  df-frec 6351  df-1o 6376  df-oadd 6380  df-er 6493  df-en 6699  df-dom 6700  df-fin 6701  df-pnf 7927  df-mnf 7928  df-xr 7929  df-ltxr 7930  df-le 7931  df-sub 8063  df-neg 8064  df-reap 8465  df-ap 8472  df-div 8561  df-inn 8850  df-2 8908  df-3 8909  df-4 8910  df-5 8911  df-6 8912  df-7 8913  df-8 8914  df-n0 9107  df-z 9184  df-uz 9459  df-q 9550  df-rp 9582  df-ioc 9821  df-ico 9822  df-fz 9937  df-fzo 10069  df-seqfrec 10372  df-exp 10446  df-fac 10629  df-ihash 10679  df-shft 10744  df-cj 10771  df-re 10772  df-im 10773  df-rsqrt 10927  df-abs 10928  df-clim 11207  df-sumdc 11282  df-ef 11576  df-cos 11579
This theorem is referenced by:  cos1bnd  11687  cos01gt0  11690  tangtx  13317
  Copyright terms: Public domain W3C validator