| Step | Hyp | Ref
| Expression |
| 1 | | 0xr 8090 |
. . . . . . . . 9
⊢ 0 ∈
ℝ* |
| 2 | | 1re 8042 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
| 3 | | elioc2 10028 |
. . . . . . . . 9
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1))) |
| 4 | 1, 2, 3 | mp2an 426 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 ≤ 1)) |
| 5 | 4 | simp1bi 1014 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 𝐴 ∈
ℝ) |
| 6 | | eqid 2196 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛))) |
| 7 | 6 | recos4p 11901 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ →
(cos‘𝐴) = ((1 −
((𝐴↑2) / 2)) +
(ℜ‘Σ𝑘
∈ (ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))) |
| 8 | 5, 7 | syl 14 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) →
(cos‘𝐴) = ((1 −
((𝐴↑2) / 2)) +
(ℜ‘Σ𝑘
∈ (ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))) |
| 9 | 8 | eqcomd 2202 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → ((1
− ((𝐴↑2) / 2)) +
(ℜ‘Σ𝑘
∈ (ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) = (cos‘𝐴)) |
| 10 | 5 | recoscld 11906 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) →
(cos‘𝐴) ∈
ℝ) |
| 11 | 10 | recnd 8072 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) →
(cos‘𝐴) ∈
ℂ) |
| 12 | 5 | resqcld 10808 |
. . . . . . . . 9
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈
ℝ) |
| 13 | 12 | rehalfcld 9255 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 2) ∈
ℝ) |
| 14 | | resubcl 8307 |
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ ((𝐴↑2) / 2) ∈ ℝ) → (1
− ((𝐴↑2) / 2))
∈ ℝ) |
| 15 | 2, 13, 14 | sylancr 414 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → (1
− ((𝐴↑2) / 2))
∈ ℝ) |
| 16 | 15 | recnd 8072 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → (1
− ((𝐴↑2) / 2))
∈ ℂ) |
| 17 | | ax-icn 7991 |
. . . . . . . . . 10
⊢ i ∈
ℂ |
| 18 | 5 | recnd 8072 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (0(,]1) → 𝐴 ∈
ℂ) |
| 19 | | mulcl 8023 |
. . . . . . . . . 10
⊢ ((i
∈ ℂ ∧ 𝐴
∈ ℂ) → (i · 𝐴) ∈ ℂ) |
| 20 | 17, 18, 19 | sylancr 414 |
. . . . . . . . 9
⊢ (𝐴 ∈ (0(,]1) → (i
· 𝐴) ∈
ℂ) |
| 21 | | 4nn0 9285 |
. . . . . . . . 9
⊢ 4 ∈
ℕ0 |
| 22 | 6 | eftlcl 11870 |
. . . . . . . . 9
⊢ (((i
· 𝐴) ∈ ℂ
∧ 4 ∈ ℕ0) → Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ) |
| 23 | 20, 21, 22 | sylancl 413 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) →
Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ) |
| 24 | 23 | recld 11120 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) →
(ℜ‘Σ𝑘
∈ (ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ) |
| 25 | 24 | recnd 8072 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) →
(ℜ‘Σ𝑘
∈ (ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℂ) |
| 26 | 11, 16, 25 | subaddd 8372 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) →
(((cos‘𝐴) − (1
− ((𝐴↑2) / 2)))
= (ℜ‘Σ𝑘
∈ (ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ↔ ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) = (cos‘𝐴))) |
| 27 | 9, 26 | mpbird 167 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) →
((cos‘𝐴) − (1
− ((𝐴↑2) / 2)))
= (ℜ‘Σ𝑘
∈ (ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) |
| 28 | 27 | fveq2d 5565 |
. . 3
⊢ (𝐴 ∈ (0(,]1) →
(abs‘((cos‘𝐴)
− (1 − ((𝐴↑2) / 2)))) =
(abs‘(ℜ‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))) |
| 29 | 25 | abscld 11363 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) →
(abs‘(ℜ‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ∈ ℝ) |
| 30 | 23 | abscld 11363 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) →
(abs‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ) |
| 31 | | 6nn 9173 |
. . . . 5
⊢ 6 ∈
ℕ |
| 32 | | nndivre 9043 |
. . . . 5
⊢ (((𝐴↑2) ∈ ℝ ∧ 6
∈ ℕ) → ((𝐴↑2) / 6) ∈
ℝ) |
| 33 | 12, 31, 32 | sylancl 413 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 6) ∈
ℝ) |
| 34 | | absrele 11265 |
. . . . 5
⊢
(Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ →
(abs‘(ℜ‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) |
| 35 | 23, 34 | syl 14 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) →
(abs‘(ℜ‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) |
| 36 | | reexpcl 10665 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 4 ∈
ℕ0) → (𝐴↑4) ∈ ℝ) |
| 37 | 5, 21, 36 | sylancl 413 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑4) ∈
ℝ) |
| 38 | | nndivre 9043 |
. . . . . 6
⊢ (((𝐴↑4) ∈ ℝ ∧ 6
∈ ℕ) → ((𝐴↑4) / 6) ∈
ℝ) |
| 39 | 37, 31, 38 | sylancl 413 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ∈
ℝ) |
| 40 | 6 | ef01bndlem 11938 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) →
(abs‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑4) / 6)) |
| 41 | | 2nn0 9283 |
. . . . . . . 8
⊢ 2 ∈
ℕ0 |
| 42 | 41 | a1i 9 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 2 ∈
ℕ0) |
| 43 | | 4z 9373 |
. . . . . . . . 9
⊢ 4 ∈
ℤ |
| 44 | | 2re 9077 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
| 45 | | 4re 9084 |
. . . . . . . . . 10
⊢ 4 ∈
ℝ |
| 46 | | 2lt4 9181 |
. . . . . . . . . 10
⊢ 2 <
4 |
| 47 | 44, 45, 46 | ltleii 8146 |
. . . . . . . . 9
⊢ 2 ≤
4 |
| 48 | | 2z 9371 |
. . . . . . . . . 10
⊢ 2 ∈
ℤ |
| 49 | 48 | eluz1i 9625 |
. . . . . . . . 9
⊢ (4 ∈
(ℤ≥‘2) ↔ (4 ∈ ℤ ∧ 2 ≤
4)) |
| 50 | 43, 47, 49 | mpbir2an 944 |
. . . . . . . 8
⊢ 4 ∈
(ℤ≥‘2) |
| 51 | 50 | a1i 9 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 4 ∈
(ℤ≥‘2)) |
| 52 | 4 | simp2bi 1015 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) → 0 <
𝐴) |
| 53 | | 0re 8043 |
. . . . . . . . 9
⊢ 0 ∈
ℝ |
| 54 | | ltle 8131 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) |
| 55 | 53, 5, 54 | sylancr 414 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) → (0 <
𝐴 → 0 ≤ 𝐴)) |
| 56 | 52, 55 | mpd 13 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 0 ≤
𝐴) |
| 57 | 4 | simp3bi 1016 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 𝐴 ≤ 1) |
| 58 | 5, 42, 51, 56, 57 | leexp2rd 10812 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑4) ≤ (𝐴↑2)) |
| 59 | | 6re 9088 |
. . . . . . . 8
⊢ 6 ∈
ℝ |
| 60 | 59 | a1i 9 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 6 ∈
ℝ) |
| 61 | | 6pos 9108 |
. . . . . . . 8
⊢ 0 <
6 |
| 62 | 61 | a1i 9 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 0 <
6) |
| 63 | | lediv1 8913 |
. . . . . . 7
⊢ (((𝐴↑4) ∈ ℝ ∧
(𝐴↑2) ∈ ℝ
∧ (6 ∈ ℝ ∧ 0 < 6)) → ((𝐴↑4) ≤ (𝐴↑2) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑2) / 6))) |
| 64 | 37, 12, 60, 62, 63 | syl112anc 1253 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑4) ≤ (𝐴↑2) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑2) / 6))) |
| 65 | 58, 64 | mpbid 147 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ≤ ((𝐴↑2) / 6)) |
| 66 | 30, 39, 33, 40, 65 | ltletrd 8467 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) →
(abs‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑2) / 6)) |
| 67 | 29, 30, 33, 35, 66 | lelttrd 8168 |
. . 3
⊢ (𝐴 ∈ (0(,]1) →
(abs‘(ℜ‘Σ𝑘 ∈
(ℤ≥‘4)((𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) < ((𝐴↑2) / 6)) |
| 68 | 28, 67 | eqbrtrd 4056 |
. 2
⊢ (𝐴 ∈ (0(,]1) →
(abs‘((cos‘𝐴)
− (1 − ((𝐴↑2) / 2)))) < ((𝐴↑2) / 6)) |
| 69 | 10, 15, 33 | absdifltd 11360 |
. . 3
⊢ (𝐴 ∈ (0(,]1) →
((abs‘((cos‘𝐴)
− (1 − ((𝐴↑2) / 2)))) < ((𝐴↑2) / 6) ↔ (((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) <
(cos‘𝐴) ∧
(cos‘𝐴) < ((1
− ((𝐴↑2) / 2)) +
((𝐴↑2) /
6))))) |
| 70 | | 1cnd 8059 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 1 ∈
ℂ) |
| 71 | 13 | recnd 8072 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 2) ∈
ℂ) |
| 72 | 33 | recnd 8072 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 6) ∈
ℂ) |
| 73 | 70, 71, 72 | subsub4d 8385 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → ((1
− ((𝐴↑2) / 2))
− ((𝐴↑2) / 6)) =
(1 − (((𝐴↑2) /
2) + ((𝐴↑2) /
6)))) |
| 74 | | halfpm6th 9228 |
. . . . . . . . . . 11
⊢ (((1 / 2)
− (1 / 6)) = (1 / 3) ∧ ((1 / 2) + (1 / 6)) = (2 /
3)) |
| 75 | 74 | simpri 113 |
. . . . . . . . . 10
⊢ ((1 / 2)
+ (1 / 6)) = (2 / 3) |
| 76 | 75 | oveq2i 5936 |
. . . . . . . . 9
⊢ ((𝐴↑2) · ((1 / 2) + (1
/ 6))) = ((𝐴↑2)
· (2 / 3)) |
| 77 | 12 | recnd 8072 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈
ℂ) |
| 78 | | 2cn 9078 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℂ |
| 79 | | 2ap0 9100 |
. . . . . . . . . . . 12
⊢ 2 #
0 |
| 80 | 78, 79 | recclapi 8786 |
. . . . . . . . . . 11
⊢ (1 / 2)
∈ ℂ |
| 81 | | 6cn 9089 |
. . . . . . . . . . . 12
⊢ 6 ∈
ℂ |
| 82 | 31 | nnap0i 9038 |
. . . . . . . . . . . 12
⊢ 6 #
0 |
| 83 | 81, 82 | recclapi 8786 |
. . . . . . . . . . 11
⊢ (1 / 6)
∈ ℂ |
| 84 | | adddi 8028 |
. . . . . . . . . . 11
⊢ (((𝐴↑2) ∈ ℂ ∧ (1
/ 2) ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((𝐴↑2) · ((1 / 2) + (1 / 6))) =
(((𝐴↑2) · (1 /
2)) + ((𝐴↑2) ·
(1 / 6)))) |
| 85 | 80, 83, 84 | mp3an23 1340 |
. . . . . . . . . 10
⊢ ((𝐴↑2) ∈ ℂ →
((𝐴↑2) · ((1 /
2) + (1 / 6))) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 /
6)))) |
| 86 | 77, 85 | syl 14 |
. . . . . . . . 9
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑2) · ((1 / 2) + (1
/ 6))) = (((𝐴↑2)
· (1 / 2)) + ((𝐴↑2) · (1 /
6)))) |
| 87 | 76, 86 | eqtr3id 2243 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (2 / 3)) =
(((𝐴↑2) · (1 /
2)) + ((𝐴↑2) ·
(1 / 6)))) |
| 88 | | 3cn 9082 |
. . . . . . . . . . 11
⊢ 3 ∈
ℂ |
| 89 | | 3ap0 9103 |
. . . . . . . . . . 11
⊢ 3 #
0 |
| 90 | 88, 89 | pm3.2i 272 |
. . . . . . . . . 10
⊢ (3 ∈
ℂ ∧ 3 # 0) |
| 91 | | div12ap 8738 |
. . . . . . . . . 10
⊢ ((2
∈ ℂ ∧ (𝐴↑2) ∈ ℂ ∧ (3 ∈
ℂ ∧ 3 # 0)) → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3))) |
| 92 | 78, 90, 91 | mp3an13 1339 |
. . . . . . . . 9
⊢ ((𝐴↑2) ∈ ℂ →
(2 · ((𝐴↑2) /
3)) = ((𝐴↑2) ·
(2 / 3))) |
| 93 | 77, 92 | syl 14 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) → (2
· ((𝐴↑2) / 3))
= ((𝐴↑2) · (2 /
3))) |
| 94 | | divrecap 8732 |
. . . . . . . . . . 11
⊢ (((𝐴↑2) ∈ ℂ ∧ 2
∈ ℂ ∧ 2 # 0) → ((𝐴↑2) / 2) = ((𝐴↑2) · (1 / 2))) |
| 95 | 78, 79, 94 | mp3an23 1340 |
. . . . . . . . . 10
⊢ ((𝐴↑2) ∈ ℂ →
((𝐴↑2) / 2) = ((𝐴↑2) · (1 /
2))) |
| 96 | 77, 95 | syl 14 |
. . . . . . . . 9
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 2) = ((𝐴↑2) · (1 /
2))) |
| 97 | | divrecap 8732 |
. . . . . . . . . . 11
⊢ (((𝐴↑2) ∈ ℂ ∧ 6
∈ ℂ ∧ 6 # 0) → ((𝐴↑2) / 6) = ((𝐴↑2) · (1 / 6))) |
| 98 | 81, 82, 97 | mp3an23 1340 |
. . . . . . . . . 10
⊢ ((𝐴↑2) ∈ ℂ →
((𝐴↑2) / 6) = ((𝐴↑2) · (1 /
6))) |
| 99 | 77, 98 | syl 14 |
. . . . . . . . 9
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 6) = ((𝐴↑2) · (1 /
6))) |
| 100 | 96, 99 | oveq12d 5943 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) + ((𝐴↑2) / 6)) = (((𝐴↑2) · (1 / 2)) +
((𝐴↑2) · (1 /
6)))) |
| 101 | 87, 93, 100 | 3eqtr4rd 2240 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) + ((𝐴↑2) / 6)) = (2 ·
((𝐴↑2) /
3))) |
| 102 | 101 | oveq2d 5941 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → (1
− (((𝐴↑2) / 2) +
((𝐴↑2) / 6))) = (1
− (2 · ((𝐴↑2) / 3)))) |
| 103 | 73, 102 | eqtrd 2229 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → ((1
− ((𝐴↑2) / 2))
− ((𝐴↑2) / 6)) =
(1 − (2 · ((𝐴↑2) / 3)))) |
| 104 | 103 | breq1d 4044 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) → (((1
− ((𝐴↑2) / 2))
− ((𝐴↑2) / 6))
< (cos‘𝐴) ↔
(1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴))) |
| 105 | 70, 71, 72 | subsubd 8382 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → (1
− (((𝐴↑2) / 2)
− ((𝐴↑2) / 6)))
= ((1 − ((𝐴↑2) /
2)) + ((𝐴↑2) /
6))) |
| 106 | 74 | simpli 111 |
. . . . . . . . . 10
⊢ ((1 / 2)
− (1 / 6)) = (1 / 3) |
| 107 | 106 | oveq2i 5936 |
. . . . . . . . 9
⊢ ((𝐴↑2) · ((1 / 2)
− (1 / 6))) = ((𝐴↑2) · (1 / 3)) |
| 108 | | subdi 8428 |
. . . . . . . . . . 11
⊢ (((𝐴↑2) ∈ ℂ ∧ (1
/ 2) ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((𝐴↑2) · ((1 / 2) − (1 / 6)))
= (((𝐴↑2) · (1
/ 2)) − ((𝐴↑2)
· (1 / 6)))) |
| 109 | 80, 83, 108 | mp3an23 1340 |
. . . . . . . . . 10
⊢ ((𝐴↑2) ∈ ℂ →
((𝐴↑2) · ((1 /
2) − (1 / 6))) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 /
6)))) |
| 110 | 77, 109 | syl 14 |
. . . . . . . . 9
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑2) · ((1 / 2)
− (1 / 6))) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 /
6)))) |
| 111 | 107, 110 | eqtr3id 2243 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (1 / 3)) =
(((𝐴↑2) · (1 /
2)) − ((𝐴↑2)
· (1 / 6)))) |
| 112 | | divrecap 8732 |
. . . . . . . . . 10
⊢ (((𝐴↑2) ∈ ℂ ∧ 3
∈ ℂ ∧ 3 # 0) → ((𝐴↑2) / 3) = ((𝐴↑2) · (1 / 3))) |
| 113 | 88, 89, 112 | mp3an23 1340 |
. . . . . . . . 9
⊢ ((𝐴↑2) ∈ ℂ →
((𝐴↑2) / 3) = ((𝐴↑2) · (1 /
3))) |
| 114 | 77, 113 | syl 14 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 3) = ((𝐴↑2) · (1 /
3))) |
| 115 | 96, 99 | oveq12d 5943 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) − ((𝐴↑2) / 6)) = (((𝐴↑2) · (1 / 2))
− ((𝐴↑2)
· (1 / 6)))) |
| 116 | 111, 114,
115 | 3eqtr4rd 2240 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) − ((𝐴↑2) / 6)) = ((𝐴↑2) / 3)) |
| 117 | 116 | oveq2d 5941 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → (1
− (((𝐴↑2) / 2)
− ((𝐴↑2) / 6)))
= (1 − ((𝐴↑2) /
3))) |
| 118 | 105, 117 | eqtr3d 2231 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → ((1
− ((𝐴↑2) / 2)) +
((𝐴↑2) / 6)) = (1
− ((𝐴↑2) /
3))) |
| 119 | 118 | breq2d 4046 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) →
((cos‘𝐴) < ((1
− ((𝐴↑2) / 2)) +
((𝐴↑2) / 6)) ↔
(cos‘𝐴) < (1
− ((𝐴↑2) /
3)))) |
| 120 | 104, 119 | anbi12d 473 |
. . 3
⊢ (𝐴 ∈ (0(,]1) → ((((1
− ((𝐴↑2) / 2))
− ((𝐴↑2) / 6))
< (cos‘𝐴) ∧
(cos‘𝐴) < ((1
− ((𝐴↑2) / 2)) +
((𝐴↑2) / 6))) ↔
((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) /
3))))) |
| 121 | 69, 120 | bitrd 188 |
. 2
⊢ (𝐴 ∈ (0(,]1) →
((abs‘((cos‘𝐴)
− (1 − ((𝐴↑2) / 2)))) < ((𝐴↑2) / 6) ↔ ((1 − (2 ·
((𝐴↑2) / 3))) <
(cos‘𝐴) ∧
(cos‘𝐴) < (1
− ((𝐴↑2) /
3))))) |
| 122 | 68, 121 | mpbid 147 |
1
⊢ (𝐴 ∈ (0(,]1) → ((1
− (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) /
3)))) |