ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos01bnd GIF version

Theorem cos01bnd 11779
Description: Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
cos01bnd (𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3))))

Proof of Theorem cos01bnd
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 8017 . . . . . . . . 9 0 ∈ ℝ*
2 1re 7969 . . . . . . . . 9 1 ∈ ℝ
3 elioc2 9949 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1)))
41, 2, 3mp2an 426 . . . . . . . 8 (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1))
54simp1bi 1013 . . . . . . 7 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℝ)
6 eqid 2187 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
76recos4p 11740 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
85, 7syl 14 . . . . . 6 (𝐴 ∈ (0(,]1) → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
98eqcomd 2193 . . . . 5 (𝐴 ∈ (0(,]1) → ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) = (cos‘𝐴))
105recoscld 11745 . . . . . . 7 (𝐴 ∈ (0(,]1) → (cos‘𝐴) ∈ ℝ)
1110recnd 7999 . . . . . 6 (𝐴 ∈ (0(,]1) → (cos‘𝐴) ∈ ℂ)
125resqcld 10693 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈ ℝ)
1312rehalfcld 9178 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 2) ∈ ℝ)
14 resubcl 8234 . . . . . . . 8 ((1 ∈ ℝ ∧ ((𝐴↑2) / 2) ∈ ℝ) → (1 − ((𝐴↑2) / 2)) ∈ ℝ)
152, 13, 14sylancr 414 . . . . . . 7 (𝐴 ∈ (0(,]1) → (1 − ((𝐴↑2) / 2)) ∈ ℝ)
1615recnd 7999 . . . . . 6 (𝐴 ∈ (0(,]1) → (1 − ((𝐴↑2) / 2)) ∈ ℂ)
17 ax-icn 7919 . . . . . . . . . 10 i ∈ ℂ
185recnd 7999 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℂ)
19 mulcl 7951 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
2017, 18, 19sylancr 414 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → (i · 𝐴) ∈ ℂ)
21 4nn0 9208 . . . . . . . . 9 4 ∈ ℕ0
226eftlcl 11709 . . . . . . . . 9 (((i · 𝐴) ∈ ℂ ∧ 4 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
2320, 21, 22sylancl 413 . . . . . . . 8 (𝐴 ∈ (0(,]1) → Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
2423recld 10960 . . . . . . 7 (𝐴 ∈ (0(,]1) → (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ)
2524recnd 7999 . . . . . 6 (𝐴 ∈ (0(,]1) → (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℂ)
2611, 16, 25subaddd 8299 . . . . 5 (𝐴 ∈ (0(,]1) → (((cos‘𝐴) − (1 − ((𝐴↑2) / 2))) = (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ↔ ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) = (cos‘𝐴)))
279, 26mpbird 167 . . . 4 (𝐴 ∈ (0(,]1) → ((cos‘𝐴) − (1 − ((𝐴↑2) / 2))) = (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
2827fveq2d 5531 . . 3 (𝐴 ∈ (0(,]1) → (abs‘((cos‘𝐴) − (1 − ((𝐴↑2) / 2)))) = (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
2925abscld 11203 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ∈ ℝ)
3023abscld 11203 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ)
31 6nn 9097 . . . . 5 6 ∈ ℕ
32 nndivre 8968 . . . . 5 (((𝐴↑2) ∈ ℝ ∧ 6 ∈ ℕ) → ((𝐴↑2) / 6) ∈ ℝ)
3312, 31, 32sylancl 413 . . . 4 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 6) ∈ ℝ)
34 absrele 11105 . . . . 5 𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ → (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
3523, 34syl 14 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
36 reexpcl 10550 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℝ)
375, 21, 36sylancl 413 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑4) ∈ ℝ)
38 nndivre 8968 . . . . . 6 (((𝐴↑4) ∈ ℝ ∧ 6 ∈ ℕ) → ((𝐴↑4) / 6) ∈ ℝ)
3937, 31, 38sylancl 413 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ∈ ℝ)
406ef01bndlem 11777 . . . . 5 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑4) / 6))
41 2nn0 9206 . . . . . . . 8 2 ∈ ℕ0
4241a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 2 ∈ ℕ0)
43 4z 9296 . . . . . . . . 9 4 ∈ ℤ
44 2re 9002 . . . . . . . . . 10 2 ∈ ℝ
45 4re 9009 . . . . . . . . . 10 4 ∈ ℝ
46 2lt4 9105 . . . . . . . . . 10 2 < 4
4744, 45, 46ltleii 8073 . . . . . . . . 9 2 ≤ 4
48 2z 9294 . . . . . . . . . 10 2 ∈ ℤ
4948eluz1i 9548 . . . . . . . . 9 (4 ∈ (ℤ‘2) ↔ (4 ∈ ℤ ∧ 2 ≤ 4))
5043, 47, 49mpbir2an 943 . . . . . . . 8 4 ∈ (ℤ‘2)
5150a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 4 ∈ (ℤ‘2))
524simp2bi 1014 . . . . . . . 8 (𝐴 ∈ (0(,]1) → 0 < 𝐴)
53 0re 7970 . . . . . . . . 9 0 ∈ ℝ
54 ltle 8058 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
5553, 5, 54sylancr 414 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (0 < 𝐴 → 0 ≤ 𝐴))
5652, 55mpd 13 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 ≤ 𝐴)
574simp3bi 1015 . . . . . . 7 (𝐴 ∈ (0(,]1) → 𝐴 ≤ 1)
585, 42, 51, 56, 57leexp2rd 10697 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑4) ≤ (𝐴↑2))
59 6re 9013 . . . . . . . 8 6 ∈ ℝ
6059a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 6 ∈ ℝ)
61 6pos 9033 . . . . . . . 8 0 < 6
6261a1i 9 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 < 6)
63 lediv1 8839 . . . . . . 7 (((𝐴↑4) ∈ ℝ ∧ (𝐴↑2) ∈ ℝ ∧ (6 ∈ ℝ ∧ 0 < 6)) → ((𝐴↑4) ≤ (𝐴↑2) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑2) / 6)))
6437, 12, 60, 62, 63syl112anc 1252 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑4) ≤ (𝐴↑2) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑2) / 6)))
6558, 64mpbid 147 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ≤ ((𝐴↑2) / 6))
6630, 39, 33, 40, 65ltletrd 8393 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑2) / 6))
6729, 30, 33, 35, 66lelttrd 8095 . . 3 (𝐴 ∈ (0(,]1) → (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) < ((𝐴↑2) / 6))
6828, 67eqbrtrd 4037 . 2 (𝐴 ∈ (0(,]1) → (abs‘((cos‘𝐴) − (1 − ((𝐴↑2) / 2)))) < ((𝐴↑2) / 6))
6910, 15, 33absdifltd 11200 . . 3 (𝐴 ∈ (0(,]1) → ((abs‘((cos‘𝐴) − (1 − ((𝐴↑2) / 2)))) < ((𝐴↑2) / 6) ↔ (((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) < (cos‘𝐴) ∧ (cos‘𝐴) < ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6)))))
70 1cnd 7986 . . . . . . 7 (𝐴 ∈ (0(,]1) → 1 ∈ ℂ)
7113recnd 7999 . . . . . . 7 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 2) ∈ ℂ)
7233recnd 7999 . . . . . . 7 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 6) ∈ ℂ)
7370, 71, 72subsub4d 8312 . . . . . 6 (𝐴 ∈ (0(,]1) → ((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) = (1 − (((𝐴↑2) / 2) + ((𝐴↑2) / 6))))
74 halfpm6th 9152 . . . . . . . . . . 11 (((1 / 2) − (1 / 6)) = (1 / 3) ∧ ((1 / 2) + (1 / 6)) = (2 / 3))
7574simpri 113 . . . . . . . . . 10 ((1 / 2) + (1 / 6)) = (2 / 3)
7675oveq2i 5899 . . . . . . . . 9 ((𝐴↑2) · ((1 / 2) + (1 / 6))) = ((𝐴↑2) · (2 / 3))
7712recnd 7999 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈ ℂ)
78 2cn 9003 . . . . . . . . . . . 12 2 ∈ ℂ
79 2ap0 9025 . . . . . . . . . . . 12 2 # 0
8078, 79recclapi 8712 . . . . . . . . . . 11 (1 / 2) ∈ ℂ
81 6cn 9014 . . . . . . . . . . . 12 6 ∈ ℂ
8231nnap0i 8963 . . . . . . . . . . . 12 6 # 0
8381, 82recclapi 8712 . . . . . . . . . . 11 (1 / 6) ∈ ℂ
84 adddi 7956 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((𝐴↑2) · ((1 / 2) + (1 / 6))) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
8580, 83, 84mp3an23 1339 . . . . . . . . . 10 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) · ((1 / 2) + (1 / 6))) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
8677, 85syl 14 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · ((1 / 2) + (1 / 6))) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
8776, 86eqtr3id 2234 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (2 / 3)) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
88 3cn 9007 . . . . . . . . . . 11 3 ∈ ℂ
89 3ap0 9028 . . . . . . . . . . 11 3 # 0
9088, 89pm3.2i 272 . . . . . . . . . 10 (3 ∈ ℂ ∧ 3 # 0)
91 div12ap 8664 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 # 0)) → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
9278, 90, 91mp3an13 1338 . . . . . . . . 9 ((𝐴↑2) ∈ ℂ → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
9377, 92syl 14 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
94 divrecap 8658 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → ((𝐴↑2) / 2) = ((𝐴↑2) · (1 / 2)))
9578, 79, 94mp3an23 1339 . . . . . . . . . 10 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) / 2) = ((𝐴↑2) · (1 / 2)))
9677, 95syl 14 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 2) = ((𝐴↑2) · (1 / 2)))
97 divrecap 8658 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 # 0) → ((𝐴↑2) / 6) = ((𝐴↑2) · (1 / 6)))
9881, 82, 97mp3an23 1339 . . . . . . . . . 10 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) / 6) = ((𝐴↑2) · (1 / 6)))
9977, 98syl 14 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 6) = ((𝐴↑2) · (1 / 6)))
10096, 99oveq12d 5906 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) + ((𝐴↑2) / 6)) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
10187, 93, 1003eqtr4rd 2231 . . . . . . 7 (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) + ((𝐴↑2) / 6)) = (2 · ((𝐴↑2) / 3)))
102101oveq2d 5904 . . . . . 6 (𝐴 ∈ (0(,]1) → (1 − (((𝐴↑2) / 2) + ((𝐴↑2) / 6))) = (1 − (2 · ((𝐴↑2) / 3))))
10373, 102eqtrd 2220 . . . . 5 (𝐴 ∈ (0(,]1) → ((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) = (1 − (2 · ((𝐴↑2) / 3))))
104103breq1d 4025 . . . 4 (𝐴 ∈ (0(,]1) → (((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) < (cos‘𝐴) ↔ (1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴)))
10570, 71, 72subsubd 8309 . . . . . 6 (𝐴 ∈ (0(,]1) → (1 − (((𝐴↑2) / 2) − ((𝐴↑2) / 6))) = ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6)))
10674simpli 111 . . . . . . . . . 10 ((1 / 2) − (1 / 6)) = (1 / 3)
107106oveq2i 5899 . . . . . . . . 9 ((𝐴↑2) · ((1 / 2) − (1 / 6))) = ((𝐴↑2) · (1 / 3))
108 subdi 8355 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((𝐴↑2) · ((1 / 2) − (1 / 6))) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
10980, 83, 108mp3an23 1339 . . . . . . . . . 10 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) · ((1 / 2) − (1 / 6))) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
11077, 109syl 14 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · ((1 / 2) − (1 / 6))) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
111107, 110eqtr3id 2234 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (1 / 3)) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
112 divrecap 8658 . . . . . . . . . 10 (((𝐴↑2) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 # 0) → ((𝐴↑2) / 3) = ((𝐴↑2) · (1 / 3)))
11388, 89, 112mp3an23 1339 . . . . . . . . 9 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) / 3) = ((𝐴↑2) · (1 / 3)))
11477, 113syl 14 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 3) = ((𝐴↑2) · (1 / 3)))
11596, 99oveq12d 5906 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) − ((𝐴↑2) / 6)) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
116111, 114, 1153eqtr4rd 2231 . . . . . . 7 (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) − ((𝐴↑2) / 6)) = ((𝐴↑2) / 3))
117116oveq2d 5904 . . . . . 6 (𝐴 ∈ (0(,]1) → (1 − (((𝐴↑2) / 2) − ((𝐴↑2) / 6))) = (1 − ((𝐴↑2) / 3)))
118105, 117eqtr3d 2222 . . . . 5 (𝐴 ∈ (0(,]1) → ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6)) = (1 − ((𝐴↑2) / 3)))
119118breq2d 4027 . . . 4 (𝐴 ∈ (0(,]1) → ((cos‘𝐴) < ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6)) ↔ (cos‘𝐴) < (1 − ((𝐴↑2) / 3))))
120104, 119anbi12d 473 . . 3 (𝐴 ∈ (0(,]1) → ((((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) < (cos‘𝐴) ∧ (cos‘𝐴) < ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6))) ↔ ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3)))))
12169, 120bitrd 188 . 2 (𝐴 ∈ (0(,]1) → ((abs‘((cos‘𝐴) − (1 − ((𝐴↑2) / 2)))) < ((𝐴↑2) / 6) ↔ ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3)))))
12268, 121mpbid 147 1 (𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 979   = wceq 1363  wcel 2158   class class class wbr 4015  cmpt 4076  cfv 5228  (class class class)co 5888  cc 7822  cr 7823  0cc0 7824  1c1 7825  ici 7826   + caddc 7827   · cmul 7829  *cxr 8004   < clt 8005  cle 8006  cmin 8141   # cap 8551   / cdiv 8642  cn 8932  2c2 8983  3c3 8984  4c4 8985  6c6 8987  0cn0 9189  cz 9266  cuz 9541  (,]cioc 9902  cexp 10532  !cfa 10718  cre 10862  abscabs 11019  Σcsu 11374  cosccos 11666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-frec 6405  df-1o 6430  df-oadd 6434  df-er 6548  df-en 6754  df-dom 6755  df-fin 6756  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-5 8994  df-6 8995  df-7 8996  df-8 8997  df-n0 9190  df-z 9267  df-uz 9542  df-q 9633  df-rp 9667  df-ioc 9906  df-ico 9907  df-fz 10022  df-fzo 10156  df-seqfrec 10459  df-exp 10533  df-fac 10719  df-ihash 10769  df-shft 10837  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021  df-clim 11300  df-sumdc 11375  df-ef 11669  df-cos 11672
This theorem is referenced by:  cos1bnd  11780  cos01gt0  11783  tangtx  14530
  Copyright terms: Public domain W3C validator