| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sincos3rdpi | GIF version | ||
| Description: The sine and cosine of π / 3. (Contributed by Mario Carneiro, 21-May-2016.) |
| Ref | Expression |
|---|---|
| sincos3rdpi | ⊢ ((sin‘(π / 3)) = ((√‘3) / 2) ∧ (cos‘(π / 3)) = (1 / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn 15469 | . . . . . . 7 ⊢ π ∈ ℂ | |
| 2 | 2cn 9189 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
| 3 | 2ap0 9211 | . . . . . . . 8 ⊢ 2 # 0 | |
| 4 | 2, 3 | recclapi 8897 | . . . . . . 7 ⊢ (1 / 2) ∈ ℂ |
| 5 | 3cn 9193 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
| 6 | 3ap0 9214 | . . . . . . . 8 ⊢ 3 # 0 | |
| 7 | 5, 6 | recclapi 8897 | . . . . . . 7 ⊢ (1 / 3) ∈ ℂ |
| 8 | 1, 4, 7 | subdii 8561 | . . . . . 6 ⊢ (π · ((1 / 2) − (1 / 3))) = ((π · (1 / 2)) − (π · (1 / 3))) |
| 9 | halfthird 9728 | . . . . . . 7 ⊢ ((1 / 2) − (1 / 3)) = (1 / 6) | |
| 10 | 9 | oveq2i 6018 | . . . . . 6 ⊢ (π · ((1 / 2) − (1 / 3))) = (π · (1 / 6)) |
| 11 | 8, 10 | eqtr3i 2252 | . . . . 5 ⊢ ((π · (1 / 2)) − (π · (1 / 3))) = (π · (1 / 6)) |
| 12 | 1, 2, 3 | divrecapi 8912 | . . . . . 6 ⊢ (π / 2) = (π · (1 / 2)) |
| 13 | 1, 5, 6 | divrecapi 8912 | . . . . . 6 ⊢ (π / 3) = (π · (1 / 3)) |
| 14 | 12, 13 | oveq12i 6019 | . . . . 5 ⊢ ((π / 2) − (π / 3)) = ((π · (1 / 2)) − (π · (1 / 3))) |
| 15 | 6cn 9200 | . . . . . 6 ⊢ 6 ∈ ℂ | |
| 16 | 6nn 9284 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
| 17 | 16 | nnap0i 9149 | . . . . . 6 ⊢ 6 # 0 |
| 18 | 1, 15, 17 | divrecapi 8912 | . . . . 5 ⊢ (π / 6) = (π · (1 / 6)) |
| 19 | 11, 14, 18 | 3eqtr4i 2260 | . . . 4 ⊢ ((π / 2) − (π / 3)) = (π / 6) |
| 20 | 19 | fveq2i 5632 | . . 3 ⊢ (cos‘((π / 2) − (π / 3))) = (cos‘(π / 6)) |
| 21 | 1, 5, 6 | divclapi 8909 | . . . 4 ⊢ (π / 3) ∈ ℂ |
| 22 | coshalfpim 15505 | . . . 4 ⊢ ((π / 3) ∈ ℂ → (cos‘((π / 2) − (π / 3))) = (sin‘(π / 3))) | |
| 23 | 21, 22 | ax-mp 5 | . . 3 ⊢ (cos‘((π / 2) − (π / 3))) = (sin‘(π / 3)) |
| 24 | sincos6thpi 15524 | . . . 4 ⊢ ((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2)) | |
| 25 | 24 | simpri 113 | . . 3 ⊢ (cos‘(π / 6)) = ((√‘3) / 2) |
| 26 | 20, 23, 25 | 3eqtr3i 2258 | . 2 ⊢ (sin‘(π / 3)) = ((√‘3) / 2) |
| 27 | 19 | fveq2i 5632 | . . 3 ⊢ (sin‘((π / 2) − (π / 3))) = (sin‘(π / 6)) |
| 28 | sinhalfpim 15503 | . . . 4 ⊢ ((π / 3) ∈ ℂ → (sin‘((π / 2) − (π / 3))) = (cos‘(π / 3))) | |
| 29 | 21, 28 | ax-mp 5 | . . 3 ⊢ (sin‘((π / 2) − (π / 3))) = (cos‘(π / 3)) |
| 30 | 24 | simpli 111 | . . 3 ⊢ (sin‘(π / 6)) = (1 / 2) |
| 31 | 27, 29, 30 | 3eqtr3i 2258 | . 2 ⊢ (cos‘(π / 3)) = (1 / 2) |
| 32 | 26, 31 | pm3.2i 272 | 1 ⊢ ((sin‘(π / 3)) = ((√‘3) / 2) ∧ (cos‘(π / 3)) = (1 / 2)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 ‘cfv 5318 (class class class)co 6007 ℂcc 8005 1c1 8008 · cmul 8012 − cmin 8325 / cdiv 8827 2c2 9169 3c3 9170 6c6 9173 √csqrt 11515 sincsin 12163 cosccos 12164 πcpi 12166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 ax-pre-suploc 8128 ax-addf 8129 ax-mulf 8130 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-disj 4060 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-of 6224 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-frec 6543 df-1o 6568 df-oadd 6572 df-er 6688 df-map 6805 df-pm 6806 df-en 6896 df-dom 6897 df-fin 6898 df-sup 7159 df-inf 7160 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-xneg 9976 df-xadd 9977 df-ioo 10096 df-ioc 10097 df-ico 10098 df-icc 10099 df-fz 10213 df-fzo 10347 df-seqfrec 10678 df-exp 10769 df-fac 10956 df-bc 10978 df-ihash 11006 df-shft 11334 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-clim 11798 df-sumdc 11873 df-ef 12167 df-sin 12169 df-cos 12170 df-pi 12172 df-rest 13282 df-topgen 13301 df-psmet 14515 df-xmet 14516 df-met 14517 df-bl 14518 df-mopn 14519 df-top 14680 df-topon 14693 df-bases 14725 df-ntr 14778 df-cn 14870 df-cnp 14871 df-tx 14935 df-cncf 15253 df-limced 15338 df-dvap 15339 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |