ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir2lem4 GIF version

Theorem lgsdir2lem4 13532
Description: Lemma for lgsdir2 13534. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2lem4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))

Proof of Theorem lgsdir2lem4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℤ)
2 8nn 9020 . . . . . . 7 8 ∈ ℕ
32a1i 9 . . . . . 6 (𝐴 ∈ ℤ → 8 ∈ ℕ)
41, 3zmodcld 10276 . . . . 5 (𝐴 ∈ ℤ → (𝐴 mod 8) ∈ ℕ0)
5 elprg 3595 . . . . 5 ((𝐴 mod 8) ∈ ℕ0 → ((𝐴 mod 8) ∈ {1, 7} ↔ ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
64, 5syl 14 . . . 4 (𝐴 ∈ ℤ → ((𝐴 mod 8) ∈ {1, 7} ↔ ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
76adantr 274 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 8) ∈ {1, 7} ↔ ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
87pm5.32i 450 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) ∈ {1, 7}) ↔ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
9 zq 9560 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
109ad2antrr 480 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → 𝐴 ∈ ℚ)
11 1nn 8864 . . . . . . . 8 1 ∈ ℕ
12 nnq 9567 . . . . . . . 8 (1 ∈ ℕ → 1 ∈ ℚ)
1311, 12ax-mp 5 . . . . . . 7 1 ∈ ℚ
1413a1i 9 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → 1 ∈ ℚ)
15 simplr 520 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → 𝐵 ∈ ℤ)
16 nnq 9567 . . . . . . . 8 (8 ∈ ℕ → 8 ∈ ℚ)
172, 16ax-mp 5 . . . . . . 7 8 ∈ ℚ
1817a1i 9 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → 8 ∈ ℚ)
19 8pos 8956 . . . . . . 7 0 < 8
2019a1i 9 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → 0 < 8)
21 simpr 109 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → (𝐴 mod 8) = 1)
22 lgsdir2lem1 13529 . . . . . . . . 9 (((1 mod 8) = 1 ∧ (-1 mod 8) = 7) ∧ ((3 mod 8) = 3 ∧ (-3 mod 8) = 5))
2322simpli 110 . . . . . . . 8 ((1 mod 8) = 1 ∧ (-1 mod 8) = 7)
2423simpli 110 . . . . . . 7 (1 mod 8) = 1
2521, 24eqtr4di 2216 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → (𝐴 mod 8) = (1 mod 8))
2610, 14, 15, 18, 20, 25modqmul1 10308 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → ((𝐴 · 𝐵) mod 8) = ((1 · 𝐵) mod 8))
27 zcn 9192 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
2827ad2antlr 481 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → 𝐵 ∈ ℂ)
2928mulid2d 7913 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → (1 · 𝐵) = 𝐵)
3029oveq1d 5856 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → ((1 · 𝐵) mod 8) = (𝐵 mod 8))
3126, 30eqtrd 2198 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → ((𝐴 · 𝐵) mod 8) = (𝐵 mod 8))
3231eleq1d 2234 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
339ad2antrr 480 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → 𝐴 ∈ ℚ)
34 qnegcl 9570 . . . . . . . . 9 (1 ∈ ℚ → -1 ∈ ℚ)
3513, 34ax-mp 5 . . . . . . . 8 -1 ∈ ℚ
3635a1i 9 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → -1 ∈ ℚ)
37 simplr 520 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → 𝐵 ∈ ℤ)
3817a1i 9 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → 8 ∈ ℚ)
3919a1i 9 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → 0 < 8)
40 simpr 109 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → (𝐴 mod 8) = 7)
4123simpri 112 . . . . . . . 8 (-1 mod 8) = 7
4240, 41eqtr4di 2216 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → (𝐴 mod 8) = (-1 mod 8))
4333, 36, 37, 38, 39, 42modqmul1 10308 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → ((𝐴 · 𝐵) mod 8) = ((-1 · 𝐵) mod 8))
4427ad2antlr 481 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → 𝐵 ∈ ℂ)
4544mulm1d 8304 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → (-1 · 𝐵) = -𝐵)
4645oveq1d 5856 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → ((-1 · 𝐵) mod 8) = (-𝐵 mod 8))
4743, 46eqtrd 2198 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → ((𝐴 · 𝐵) mod 8) = (-𝐵 mod 8))
4847eleq1d 2234 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (-𝐵 mod 8) ∈ {1, 7}))
49 znegcl 9218 . . . . . . . 8 (𝐵 ∈ ℤ → -𝐵 ∈ ℤ)
50 oveq1 5848 . . . . . . . . . . 11 (𝑥 = -𝐵 → (𝑥 mod 8) = (-𝐵 mod 8))
5150eleq1d 2234 . . . . . . . . . 10 (𝑥 = -𝐵 → ((𝑥 mod 8) ∈ {1, 7} ↔ (-𝐵 mod 8) ∈ {1, 7}))
52 negeq 8087 . . . . . . . . . . . 12 (𝑥 = -𝐵 → -𝑥 = --𝐵)
5352oveq1d 5856 . . . . . . . . . . 11 (𝑥 = -𝐵 → (-𝑥 mod 8) = (--𝐵 mod 8))
5453eleq1d 2234 . . . . . . . . . 10 (𝑥 = -𝐵 → ((-𝑥 mod 8) ∈ {1, 7} ↔ (--𝐵 mod 8) ∈ {1, 7}))
5551, 54imbi12d 233 . . . . . . . . 9 (𝑥 = -𝐵 → (((𝑥 mod 8) ∈ {1, 7} → (-𝑥 mod 8) ∈ {1, 7}) ↔ ((-𝐵 mod 8) ∈ {1, 7} → (--𝐵 mod 8) ∈ {1, 7})))
56 zcn 9192 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
57 neg1cn 8958 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℂ
58 mulcom 7878 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℂ ∧ -1 ∈ ℂ) → (𝑥 · -1) = (-1 · 𝑥))
5957, 58mpan2 422 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → (𝑥 · -1) = (-1 · 𝑥))
60 mulm1 8294 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → (-1 · 𝑥) = -𝑥)
6159, 60eqtrd 2198 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → (𝑥 · -1) = -𝑥)
6256, 61syl 14 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → (𝑥 · -1) = -𝑥)
6362adantr 274 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → (𝑥 · -1) = -𝑥)
6463oveq1d 5856 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → ((𝑥 · -1) mod 8) = (-𝑥 mod 8))
65 zq 9560 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → 𝑥 ∈ ℚ)
6665adantr 274 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → 𝑥 ∈ ℚ)
6713a1i 9 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → 1 ∈ ℚ)
68 neg1z 9219 . . . . . . . . . . . . . . . 16 -1 ∈ ℤ
6968a1i 9 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → -1 ∈ ℤ)
7017a1i 9 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → 8 ∈ ℚ)
7119a1i 9 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → 0 < 8)
72 simpr 109 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → (𝑥 mod 8) = 1)
7372, 24eqtr4di 2216 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → (𝑥 mod 8) = (1 mod 8))
7466, 67, 69, 70, 71, 73modqmul1 10308 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → ((𝑥 · -1) mod 8) = ((1 · -1) mod 8))
7564, 74eqtr3d 2200 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → (-𝑥 mod 8) = ((1 · -1) mod 8))
7657mulid2i 7898 . . . . . . . . . . . . . . 15 (1 · -1) = -1
7776oveq1i 5851 . . . . . . . . . . . . . 14 ((1 · -1) mod 8) = (-1 mod 8)
7877, 41eqtri 2186 . . . . . . . . . . . . 13 ((1 · -1) mod 8) = 7
7975, 78eqtrdi 2214 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → (-𝑥 mod 8) = 7)
8079ex 114 . . . . . . . . . . 11 (𝑥 ∈ ℤ → ((𝑥 mod 8) = 1 → (-𝑥 mod 8) = 7))
8162adantr 274 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → (𝑥 · -1) = -𝑥)
8281oveq1d 5856 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → ((𝑥 · -1) mod 8) = (-𝑥 mod 8))
8365adantr 274 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → 𝑥 ∈ ℚ)
8435a1i 9 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → -1 ∈ ℚ)
8568a1i 9 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → -1 ∈ ℤ)
8617a1i 9 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → 8 ∈ ℚ)
8719a1i 9 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → 0 < 8)
88 simpr 109 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → (𝑥 mod 8) = 7)
8988, 41eqtr4di 2216 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → (𝑥 mod 8) = (-1 mod 8))
9083, 84, 85, 86, 87, 89modqmul1 10308 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → ((𝑥 · -1) mod 8) = ((-1 · -1) mod 8))
9182, 90eqtr3d 2200 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → (-𝑥 mod 8) = ((-1 · -1) mod 8))
92 neg1mulneg1e1 9065 . . . . . . . . . . . . . . 15 (-1 · -1) = 1
9392oveq1i 5851 . . . . . . . . . . . . . 14 ((-1 · -1) mod 8) = (1 mod 8)
9493, 24eqtri 2186 . . . . . . . . . . . . 13 ((-1 · -1) mod 8) = 1
9591, 94eqtrdi 2214 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → (-𝑥 mod 8) = 1)
9695ex 114 . . . . . . . . . . 11 (𝑥 ∈ ℤ → ((𝑥 mod 8) = 7 → (-𝑥 mod 8) = 1))
9780, 96orim12d 776 . . . . . . . . . 10 (𝑥 ∈ ℤ → (((𝑥 mod 8) = 1 ∨ (𝑥 mod 8) = 7) → ((-𝑥 mod 8) = 7 ∨ (-𝑥 mod 8) = 1)))
98 zmodcl 10275 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 8 ∈ ℕ) → (𝑥 mod 8) ∈ ℕ0)
992, 98mpan2 422 . . . . . . . . . . 11 (𝑥 ∈ ℤ → (𝑥 mod 8) ∈ ℕ0)
100 elprg 3595 . . . . . . . . . . 11 ((𝑥 mod 8) ∈ ℕ0 → ((𝑥 mod 8) ∈ {1, 7} ↔ ((𝑥 mod 8) = 1 ∨ (𝑥 mod 8) = 7)))
10199, 100syl 14 . . . . . . . . . 10 (𝑥 ∈ ℤ → ((𝑥 mod 8) ∈ {1, 7} ↔ ((𝑥 mod 8) = 1 ∨ (𝑥 mod 8) = 7)))
102 znegcl 9218 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
1032a1i 9 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → 8 ∈ ℕ)
104102, 103zmodcld 10276 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (-𝑥 mod 8) ∈ ℕ0)
105 elprg 3595 . . . . . . . . . . . 12 ((-𝑥 mod 8) ∈ ℕ0 → ((-𝑥 mod 8) ∈ {1, 7} ↔ ((-𝑥 mod 8) = 1 ∨ (-𝑥 mod 8) = 7)))
106104, 105syl 14 . . . . . . . . . . 11 (𝑥 ∈ ℤ → ((-𝑥 mod 8) ∈ {1, 7} ↔ ((-𝑥 mod 8) = 1 ∨ (-𝑥 mod 8) = 7)))
107 orcom 718 . . . . . . . . . . 11 (((-𝑥 mod 8) = 1 ∨ (-𝑥 mod 8) = 7) ↔ ((-𝑥 mod 8) = 7 ∨ (-𝑥 mod 8) = 1))
108106, 107bitrdi 195 . . . . . . . . . 10 (𝑥 ∈ ℤ → ((-𝑥 mod 8) ∈ {1, 7} ↔ ((-𝑥 mod 8) = 7 ∨ (-𝑥 mod 8) = 1)))
10997, 101, 1083imtr4d 202 . . . . . . . . 9 (𝑥 ∈ ℤ → ((𝑥 mod 8) ∈ {1, 7} → (-𝑥 mod 8) ∈ {1, 7}))
11055, 109vtoclga 2791 . . . . . . . 8 (-𝐵 ∈ ℤ → ((-𝐵 mod 8) ∈ {1, 7} → (--𝐵 mod 8) ∈ {1, 7}))
11149, 110syl 14 . . . . . . 7 (𝐵 ∈ ℤ → ((-𝐵 mod 8) ∈ {1, 7} → (--𝐵 mod 8) ∈ {1, 7}))
11227negnegd 8196 . . . . . . . . 9 (𝐵 ∈ ℤ → --𝐵 = 𝐵)
113112oveq1d 5856 . . . . . . . 8 (𝐵 ∈ ℤ → (--𝐵 mod 8) = (𝐵 mod 8))
114113eleq1d 2234 . . . . . . 7 (𝐵 ∈ ℤ → ((--𝐵 mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
115111, 114sylibd 148 . . . . . 6 (𝐵 ∈ ℤ → ((-𝐵 mod 8) ∈ {1, 7} → (𝐵 mod 8) ∈ {1, 7}))
116 oveq1 5848 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑥 mod 8) = (𝐵 mod 8))
117116eleq1d 2234 . . . . . . . 8 (𝑥 = 𝐵 → ((𝑥 mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
118 negeq 8087 . . . . . . . . . 10 (𝑥 = 𝐵 → -𝑥 = -𝐵)
119118oveq1d 5856 . . . . . . . . 9 (𝑥 = 𝐵 → (-𝑥 mod 8) = (-𝐵 mod 8))
120119eleq1d 2234 . . . . . . . 8 (𝑥 = 𝐵 → ((-𝑥 mod 8) ∈ {1, 7} ↔ (-𝐵 mod 8) ∈ {1, 7}))
121117, 120imbi12d 233 . . . . . . 7 (𝑥 = 𝐵 → (((𝑥 mod 8) ∈ {1, 7} → (-𝑥 mod 8) ∈ {1, 7}) ↔ ((𝐵 mod 8) ∈ {1, 7} → (-𝐵 mod 8) ∈ {1, 7})))
122121, 109vtoclga 2791 . . . . . 6 (𝐵 ∈ ℤ → ((𝐵 mod 8) ∈ {1, 7} → (-𝐵 mod 8) ∈ {1, 7}))
123115, 122impbid 128 . . . . 5 (𝐵 ∈ ℤ → ((-𝐵 mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
124123ad2antlr 481 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → ((-𝐵 mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
12548, 124bitrd 187 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
12632, 125jaodan 787 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
1278, 126sylbi 120 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1343  wcel 2136  {cpr 3576   class class class wbr 3981  (class class class)co 5841  cc 7747  0cc0 7749  1c1 7750   · cmul 7754   < clt 7929  -cneg 8066  cn 8853  3c3 8905  5c5 8907  7c7 8909  8c8 8910  0cn0 9110  cz 9187  cq 9553   mod cmo 10253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-po 4273  df-iso 4274  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-5 8915  df-6 8916  df-7 8917  df-8 8918  df-n0 9111  df-z 9188  df-q 9554  df-rp 9586  df-fl 10201  df-mod 10254
This theorem is referenced by:  lgsdir2  13534
  Copyright terms: Public domain W3C validator