| Step | Hyp | Ref
| Expression |
| 1 | | id 19 |
. . . . . 6
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℤ) |
| 2 | | 8nn 9175 |
. . . . . . 7
⊢ 8 ∈
ℕ |
| 3 | 2 | a1i 9 |
. . . . . 6
⊢ (𝐴 ∈ ℤ → 8 ∈
ℕ) |
| 4 | 1, 3 | zmodcld 10454 |
. . . . 5
⊢ (𝐴 ∈ ℤ → (𝐴 mod 8) ∈
ℕ0) |
| 5 | | elprg 3643 |
. . . . 5
⊢ ((𝐴 mod 8) ∈
ℕ0 → ((𝐴 mod 8) ∈ {1, 7} ↔ ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7))) |
| 6 | 4, 5 | syl 14 |
. . . 4
⊢ (𝐴 ∈ ℤ → ((𝐴 mod 8) ∈ {1, 7} ↔
((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7))) |
| 7 | 6 | adantr 276 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 8) ∈ {1, 7} ↔
((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7))) |
| 8 | 7 | pm5.32i 454 |
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) ∈ {1, 7}) ↔
((𝐴 ∈ ℤ ∧
𝐵 ∈ ℤ) ∧
((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7))) |
| 9 | | zq 9717 |
. . . . . . 7
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℚ) |
| 10 | 9 | ad2antrr 488 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → 𝐴 ∈
ℚ) |
| 11 | | 1nn 9018 |
. . . . . . . 8
⊢ 1 ∈
ℕ |
| 12 | | nnq 9724 |
. . . . . . . 8
⊢ (1 ∈
ℕ → 1 ∈ ℚ) |
| 13 | 11, 12 | ax-mp 5 |
. . . . . . 7
⊢ 1 ∈
ℚ |
| 14 | 13 | a1i 9 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → 1 ∈
ℚ) |
| 15 | | simplr 528 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → 𝐵 ∈
ℤ) |
| 16 | | nnq 9724 |
. . . . . . . 8
⊢ (8 ∈
ℕ → 8 ∈ ℚ) |
| 17 | 2, 16 | ax-mp 5 |
. . . . . . 7
⊢ 8 ∈
ℚ |
| 18 | 17 | a1i 9 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → 8 ∈
ℚ) |
| 19 | | 8pos 9110 |
. . . . . . 7
⊢ 0 <
8 |
| 20 | 19 | a1i 9 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → 0 <
8) |
| 21 | | simpr 110 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → (𝐴 mod 8) = 1) |
| 22 | | lgsdir2lem1 15353 |
. . . . . . . . 9
⊢ (((1 mod
8) = 1 ∧ (-1 mod 8) = 7) ∧ ((3 mod 8) = 3 ∧ (-3 mod 8) =
5)) |
| 23 | 22 | simpli 111 |
. . . . . . . 8
⊢ ((1 mod
8) = 1 ∧ (-1 mod 8) = 7) |
| 24 | 23 | simpli 111 |
. . . . . . 7
⊢ (1 mod 8)
= 1 |
| 25 | 21, 24 | eqtr4di 2247 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → (𝐴 mod 8) = (1 mod
8)) |
| 26 | 10, 14, 15, 18, 20, 25 | modqmul1 10486 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → ((𝐴 · 𝐵) mod 8) = ((1 · 𝐵) mod 8)) |
| 27 | | zcn 9348 |
. . . . . . . 8
⊢ (𝐵 ∈ ℤ → 𝐵 ∈
ℂ) |
| 28 | 27 | ad2antlr 489 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → 𝐵 ∈
ℂ) |
| 29 | 28 | mulid2d 8062 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → (1 ·
𝐵) = 𝐵) |
| 30 | 29 | oveq1d 5940 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → ((1 ·
𝐵) mod 8) = (𝐵 mod 8)) |
| 31 | 26, 30 | eqtrd 2229 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → ((𝐴 · 𝐵) mod 8) = (𝐵 mod 8)) |
| 32 | 31 | eleq1d 2265 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1,
7})) |
| 33 | 9 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → 𝐴 ∈
ℚ) |
| 34 | | qnegcl 9727 |
. . . . . . . . 9
⊢ (1 ∈
ℚ → -1 ∈ ℚ) |
| 35 | 13, 34 | ax-mp 5 |
. . . . . . . 8
⊢ -1 ∈
ℚ |
| 36 | 35 | a1i 9 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → -1 ∈
ℚ) |
| 37 | | simplr 528 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → 𝐵 ∈
ℤ) |
| 38 | 17 | a1i 9 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → 8 ∈
ℚ) |
| 39 | 19 | a1i 9 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → 0 <
8) |
| 40 | | simpr 110 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → (𝐴 mod 8) = 7) |
| 41 | 23 | simpri 113 |
. . . . . . . 8
⊢ (-1 mod
8) = 7 |
| 42 | 40, 41 | eqtr4di 2247 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → (𝐴 mod 8) = (-1 mod
8)) |
| 43 | 33, 36, 37, 38, 39, 42 | modqmul1 10486 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → ((𝐴 · 𝐵) mod 8) = ((-1 · 𝐵) mod 8)) |
| 44 | 27 | ad2antlr 489 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → 𝐵 ∈
ℂ) |
| 45 | 44 | mulm1d 8453 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → (-1 ·
𝐵) = -𝐵) |
| 46 | 45 | oveq1d 5940 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → ((-1
· 𝐵) mod 8) =
(-𝐵 mod
8)) |
| 47 | 43, 46 | eqtrd 2229 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → ((𝐴 · 𝐵) mod 8) = (-𝐵 mod 8)) |
| 48 | 47 | eleq1d 2265 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (-𝐵 mod 8) ∈ {1,
7})) |
| 49 | | znegcl 9374 |
. . . . . . . 8
⊢ (𝐵 ∈ ℤ → -𝐵 ∈
ℤ) |
| 50 | | oveq1 5932 |
. . . . . . . . . . 11
⊢ (𝑥 = -𝐵 → (𝑥 mod 8) = (-𝐵 mod 8)) |
| 51 | 50 | eleq1d 2265 |
. . . . . . . . . 10
⊢ (𝑥 = -𝐵 → ((𝑥 mod 8) ∈ {1, 7} ↔ (-𝐵 mod 8) ∈ {1,
7})) |
| 52 | | negeq 8236 |
. . . . . . . . . . . 12
⊢ (𝑥 = -𝐵 → -𝑥 = --𝐵) |
| 53 | 52 | oveq1d 5940 |
. . . . . . . . . . 11
⊢ (𝑥 = -𝐵 → (-𝑥 mod 8) = (--𝐵 mod 8)) |
| 54 | 53 | eleq1d 2265 |
. . . . . . . . . 10
⊢ (𝑥 = -𝐵 → ((-𝑥 mod 8) ∈ {1, 7} ↔ (--𝐵 mod 8) ∈ {1,
7})) |
| 55 | 51, 54 | imbi12d 234 |
. . . . . . . . 9
⊢ (𝑥 = -𝐵 → (((𝑥 mod 8) ∈ {1, 7} → (-𝑥 mod 8) ∈ {1, 7}) ↔
((-𝐵 mod 8) ∈ {1, 7}
→ (--𝐵 mod 8) ∈
{1, 7}))) |
| 56 | | zcn 9348 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℂ) |
| 57 | | neg1cn 9112 |
. . . . . . . . . . . . . . . . . . 19
⊢ -1 ∈
ℂ |
| 58 | | mulcom 8025 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ℂ ∧ -1 ∈
ℂ) → (𝑥 ·
-1) = (-1 · 𝑥)) |
| 59 | 57, 58 | mpan2 425 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℂ → (𝑥 · -1) = (-1 ·
𝑥)) |
| 60 | | mulm1 8443 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℂ → (-1
· 𝑥) = -𝑥) |
| 61 | 59, 60 | eqtrd 2229 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℂ → (𝑥 · -1) = -𝑥) |
| 62 | 56, 61 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℤ → (𝑥 · -1) = -𝑥) |
| 63 | 62 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → (𝑥 · -1) = -𝑥) |
| 64 | 63 | oveq1d 5940 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → ((𝑥 · -1) mod 8) = (-𝑥 mod 8)) |
| 65 | | zq 9717 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℚ) |
| 66 | 65 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → 𝑥 ∈
ℚ) |
| 67 | 13 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → 1 ∈
ℚ) |
| 68 | | neg1z 9375 |
. . . . . . . . . . . . . . . 16
⊢ -1 ∈
ℤ |
| 69 | 68 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → -1 ∈
ℤ) |
| 70 | 17 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → 8 ∈
ℚ) |
| 71 | 19 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → 0 <
8) |
| 72 | | simpr 110 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → (𝑥 mod 8) = 1) |
| 73 | 72, 24 | eqtr4di 2247 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → (𝑥 mod 8) = (1 mod
8)) |
| 74 | 66, 67, 69, 70, 71, 73 | modqmul1 10486 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → ((𝑥 · -1) mod 8) = ((1
· -1) mod 8)) |
| 75 | 64, 74 | eqtr3d 2231 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → (-𝑥 mod 8) = ((1 · -1) mod
8)) |
| 76 | 57 | mullidi 8046 |
. . . . . . . . . . . . . . 15
⊢ (1
· -1) = -1 |
| 77 | 76 | oveq1i 5935 |
. . . . . . . . . . . . . 14
⊢ ((1
· -1) mod 8) = (-1 mod 8) |
| 78 | 77, 41 | eqtri 2217 |
. . . . . . . . . . . . 13
⊢ ((1
· -1) mod 8) = 7 |
| 79 | 75, 78 | eqtrdi 2245 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → (-𝑥 mod 8) = 7) |
| 80 | 79 | ex 115 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℤ → ((𝑥 mod 8) = 1 → (-𝑥 mod 8) = 7)) |
| 81 | 62 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → (𝑥 · -1) = -𝑥) |
| 82 | 81 | oveq1d 5940 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → ((𝑥 · -1) mod 8) = (-𝑥 mod 8)) |
| 83 | 65 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → 𝑥 ∈
ℚ) |
| 84 | 35 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → -1 ∈
ℚ) |
| 85 | 68 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → -1 ∈
ℤ) |
| 86 | 17 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → 8 ∈
ℚ) |
| 87 | 19 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → 0 <
8) |
| 88 | | simpr 110 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → (𝑥 mod 8) = 7) |
| 89 | 88, 41 | eqtr4di 2247 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → (𝑥 mod 8) = (-1 mod
8)) |
| 90 | 83, 84, 85, 86, 87, 89 | modqmul1 10486 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → ((𝑥 · -1) mod 8) = ((-1
· -1) mod 8)) |
| 91 | 82, 90 | eqtr3d 2231 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → (-𝑥 mod 8) = ((-1 · -1) mod
8)) |
| 92 | | neg1mulneg1e1 9220 |
. . . . . . . . . . . . . . 15
⊢ (-1
· -1) = 1 |
| 93 | 92 | oveq1i 5935 |
. . . . . . . . . . . . . 14
⊢ ((-1
· -1) mod 8) = (1 mod 8) |
| 94 | 93, 24 | eqtri 2217 |
. . . . . . . . . . . . 13
⊢ ((-1
· -1) mod 8) = 1 |
| 95 | 91, 94 | eqtrdi 2245 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → (-𝑥 mod 8) = 1) |
| 96 | 95 | ex 115 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℤ → ((𝑥 mod 8) = 7 → (-𝑥 mod 8) = 1)) |
| 97 | 80, 96 | orim12d 787 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℤ → (((𝑥 mod 8) = 1 ∨ (𝑥 mod 8) = 7) → ((-𝑥 mod 8) = 7 ∨ (-𝑥 mod 8) = 1))) |
| 98 | | zmodcl 10453 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℤ ∧ 8 ∈
ℕ) → (𝑥 mod 8)
∈ ℕ0) |
| 99 | 2, 98 | mpan2 425 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℤ → (𝑥 mod 8) ∈
ℕ0) |
| 100 | | elprg 3643 |
. . . . . . . . . . 11
⊢ ((𝑥 mod 8) ∈
ℕ0 → ((𝑥 mod 8) ∈ {1, 7} ↔ ((𝑥 mod 8) = 1 ∨ (𝑥 mod 8) = 7))) |
| 101 | 99, 100 | syl 14 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℤ → ((𝑥 mod 8) ∈ {1, 7} ↔
((𝑥 mod 8) = 1 ∨ (𝑥 mod 8) = 7))) |
| 102 | | znegcl 9374 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℤ → -𝑥 ∈
ℤ) |
| 103 | 2 | a1i 9 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℤ → 8 ∈
ℕ) |
| 104 | 102, 103 | zmodcld 10454 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℤ → (-𝑥 mod 8) ∈
ℕ0) |
| 105 | | elprg 3643 |
. . . . . . . . . . . 12
⊢ ((-𝑥 mod 8) ∈
ℕ0 → ((-𝑥 mod 8) ∈ {1, 7} ↔ ((-𝑥 mod 8) = 1 ∨ (-𝑥 mod 8) = 7))) |
| 106 | 104, 105 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℤ → ((-𝑥 mod 8) ∈ {1, 7} ↔
((-𝑥 mod 8) = 1 ∨
(-𝑥 mod 8) =
7))) |
| 107 | | orcom 729 |
. . . . . . . . . . 11
⊢ (((-𝑥 mod 8) = 1 ∨ (-𝑥 mod 8) = 7) ↔ ((-𝑥 mod 8) = 7 ∨ (-𝑥 mod 8) = 1)) |
| 108 | 106, 107 | bitrdi 196 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℤ → ((-𝑥 mod 8) ∈ {1, 7} ↔
((-𝑥 mod 8) = 7 ∨
(-𝑥 mod 8) =
1))) |
| 109 | 97, 101, 108 | 3imtr4d 203 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℤ → ((𝑥 mod 8) ∈ {1, 7} →
(-𝑥 mod 8) ∈ {1,
7})) |
| 110 | 55, 109 | vtoclga 2830 |
. . . . . . . 8
⊢ (-𝐵 ∈ ℤ → ((-𝐵 mod 8) ∈ {1, 7} →
(--𝐵 mod 8) ∈ {1,
7})) |
| 111 | 49, 110 | syl 14 |
. . . . . . 7
⊢ (𝐵 ∈ ℤ → ((-𝐵 mod 8) ∈ {1, 7} →
(--𝐵 mod 8) ∈ {1,
7})) |
| 112 | 27 | negnegd 8345 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℤ → --𝐵 = 𝐵) |
| 113 | 112 | oveq1d 5940 |
. . . . . . . 8
⊢ (𝐵 ∈ ℤ → (--𝐵 mod 8) = (𝐵 mod 8)) |
| 114 | 113 | eleq1d 2265 |
. . . . . . 7
⊢ (𝐵 ∈ ℤ → ((--𝐵 mod 8) ∈ {1, 7} ↔
(𝐵 mod 8) ∈ {1,
7})) |
| 115 | 111, 114 | sylibd 149 |
. . . . . 6
⊢ (𝐵 ∈ ℤ → ((-𝐵 mod 8) ∈ {1, 7} →
(𝐵 mod 8) ∈ {1,
7})) |
| 116 | | oveq1 5932 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → (𝑥 mod 8) = (𝐵 mod 8)) |
| 117 | 116 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → ((𝑥 mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1,
7})) |
| 118 | | negeq 8236 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐵 → -𝑥 = -𝐵) |
| 119 | 118 | oveq1d 5940 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → (-𝑥 mod 8) = (-𝐵 mod 8)) |
| 120 | 119 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → ((-𝑥 mod 8) ∈ {1, 7} ↔ (-𝐵 mod 8) ∈ {1,
7})) |
| 121 | 117, 120 | imbi12d 234 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → (((𝑥 mod 8) ∈ {1, 7} → (-𝑥 mod 8) ∈ {1, 7}) ↔
((𝐵 mod 8) ∈ {1, 7}
→ (-𝐵 mod 8) ∈
{1, 7}))) |
| 122 | 121, 109 | vtoclga 2830 |
. . . . . 6
⊢ (𝐵 ∈ ℤ → ((𝐵 mod 8) ∈ {1, 7} →
(-𝐵 mod 8) ∈ {1,
7})) |
| 123 | 115, 122 | impbid 129 |
. . . . 5
⊢ (𝐵 ∈ ℤ → ((-𝐵 mod 8) ∈ {1, 7} ↔
(𝐵 mod 8) ∈ {1,
7})) |
| 124 | 123 | ad2antlr 489 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → ((-𝐵 mod 8) ∈ {1, 7} ↔
(𝐵 mod 8) ∈ {1,
7})) |
| 125 | 48, 124 | bitrd 188 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1,
7})) |
| 126 | 32, 125 | jaodan 798 |
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1,
7})) |
| 127 | 8, 126 | sylbi 121 |
1
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) ∈ {1, 7}) →
(((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔
(𝐵 mod 8) ∈ {1,
7})) |