ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  slotslfn GIF version

Theorem slotslfn 12490
Description: A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.) (Revised by Jim Kingdon, 10-Feb-2023.)
Hypothesis
Ref Expression
slotslfn.e (𝐸 = Slot (πΈβ€˜ndx) ∧ (πΈβ€˜ndx) ∈ β„•)
Assertion
Ref Expression
slotslfn 𝐸 Fn V

Proof of Theorem slotslfn
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 vex 2742 . . 3 π‘₯ ∈ V
2 slotslfn.e . . . 4 (𝐸 = Slot (πΈβ€˜ndx) ∧ (πΈβ€˜ndx) ∈ β„•)
32simpri 113 . . 3 (πΈβ€˜ndx) ∈ β„•
41, 3fvex 5537 . 2 (π‘₯β€˜(πΈβ€˜ndx)) ∈ V
52simpli 111 . . 3 𝐸 = Slot (πΈβ€˜ndx)
6 df-slot 12468 . . 3 Slot (πΈβ€˜ndx) = (π‘₯ ∈ V ↦ (π‘₯β€˜(πΈβ€˜ndx)))
75, 6eqtri 2198 . 2 𝐸 = (π‘₯ ∈ V ↦ (π‘₯β€˜(πΈβ€˜ndx)))
84, 7fnmpti 5346 1 𝐸 Fn V
Colors of variables: wff set class
Syntax hints:   ∧ wa 104   = wceq 1353   ∈ wcel 2148  Vcvv 2739   ↦ cmpt 4066   Fn wfn 5213  β€˜cfv 5218  β„•cn 8921  ndxcnx 12461  Slot cslot 12463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-slot 12468
This theorem is referenced by:  slotex  12491  basfn  12522  topontopn  13622
  Copyright terms: Public domain W3C validator