| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > slotslfn | GIF version | ||
| Description: A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.) (Revised by Jim Kingdon, 10-Feb-2023.) |
| Ref | Expression |
|---|---|
| slotslfn.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| Ref | Expression |
|---|---|
| slotslfn | ⊢ 𝐸 Fn V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 | . . 3 ⊢ 𝑥 ∈ V | |
| 2 | slotslfn.e | . . . 4 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 3 | 2 | simpri 113 | . . 3 ⊢ (𝐸‘ndx) ∈ ℕ |
| 4 | 1, 3 | fvex 5581 | . 2 ⊢ (𝑥‘(𝐸‘ndx)) ∈ V |
| 5 | 2 | simpli 111 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
| 6 | df-slot 12707 | . . 3 ⊢ Slot (𝐸‘ndx) = (𝑥 ∈ V ↦ (𝑥‘(𝐸‘ndx))) | |
| 7 | 5, 6 | eqtri 2217 | . 2 ⊢ 𝐸 = (𝑥 ∈ V ↦ (𝑥‘(𝐸‘ndx))) |
| 8 | 4, 7 | fnmpti 5389 | 1 ⊢ 𝐸 Fn V |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ↦ cmpt 4095 Fn wfn 5254 ‘cfv 5259 ℕcn 9007 ndxcnx 12700 Slot cslot 12702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-slot 12707 |
| This theorem is referenced by: slotex 12730 basfn 12761 topontopn 14357 |
| Copyright terms: Public domain | W3C validator |