| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > slotslfn | GIF version | ||
| Description: A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.) (Revised by Jim Kingdon, 10-Feb-2023.) |
| Ref | Expression |
|---|---|
| slotslfn.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| Ref | Expression |
|---|---|
| slotslfn | ⊢ 𝐸 Fn V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2775 | . . 3 ⊢ 𝑥 ∈ V | |
| 2 | slotslfn.e | . . . 4 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 3 | 2 | simpri 113 | . . 3 ⊢ (𝐸‘ndx) ∈ ℕ |
| 4 | 1, 3 | fvex 5598 | . 2 ⊢ (𝑥‘(𝐸‘ndx)) ∈ V |
| 5 | 2 | simpli 111 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
| 6 | df-slot 12869 | . . 3 ⊢ Slot (𝐸‘ndx) = (𝑥 ∈ V ↦ (𝑥‘(𝐸‘ndx))) | |
| 7 | 5, 6 | eqtri 2226 | . 2 ⊢ 𝐸 = (𝑥 ∈ V ↦ (𝑥‘(𝐸‘ndx))) |
| 8 | 4, 7 | fnmpti 5406 | 1 ⊢ 𝐸 Fn V |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2176 Vcvv 2772 ↦ cmpt 4106 Fn wfn 5267 ‘cfv 5272 ℕcn 9038 ndxcnx 12862 Slot cslot 12864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-iota 5233 df-fun 5274 df-fn 5275 df-fv 5280 df-slot 12869 |
| This theorem is referenced by: slotex 12892 basfn 12923 topontopn 14542 |
| Copyright terms: Public domain | W3C validator |