ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  slotslfn GIF version

Theorem slotslfn 12644
Description: A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.) (Revised by Jim Kingdon, 10-Feb-2023.)
Hypothesis
Ref Expression
slotslfn.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
Assertion
Ref Expression
slotslfn 𝐸 Fn V

Proof of Theorem slotslfn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . 3 𝑥 ∈ V
2 slotslfn.e . . . 4 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
32simpri 113 . . 3 (𝐸‘ndx) ∈ ℕ
41, 3fvex 5574 . 2 (𝑥‘(𝐸‘ndx)) ∈ V
52simpli 111 . . 3 𝐸 = Slot (𝐸‘ndx)
6 df-slot 12622 . . 3 Slot (𝐸‘ndx) = (𝑥 ∈ V ↦ (𝑥‘(𝐸‘ndx)))
75, 6eqtri 2214 . 2 𝐸 = (𝑥 ∈ V ↦ (𝑥‘(𝐸‘ndx)))
84, 7fnmpti 5382 1 𝐸 Fn V
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  cmpt 4090   Fn wfn 5249  cfv 5254  cn 8982  ndxcnx 12615  Slot cslot 12617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-slot 12622
This theorem is referenced by:  slotex  12645  basfn  12676  topontopn  14205
  Copyright terms: Public domain W3C validator