Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > slotslfn | GIF version |
Description: A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.) (Revised by Jim Kingdon, 10-Feb-2023.) |
Ref | Expression |
---|---|
slotslfn.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
Ref | Expression |
---|---|
slotslfn | ⊢ 𝐸 Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . 3 ⊢ 𝑥 ∈ V | |
2 | slotslfn.e | . . . 4 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
3 | 2 | simpri 112 | . . 3 ⊢ (𝐸‘ndx) ∈ ℕ |
4 | 1, 3 | fvex 5506 | . 2 ⊢ (𝑥‘(𝐸‘ndx)) ∈ V |
5 | 2 | simpli 110 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
6 | df-slot 12398 | . . 3 ⊢ Slot (𝐸‘ndx) = (𝑥 ∈ V ↦ (𝑥‘(𝐸‘ndx))) | |
7 | 5, 6 | eqtri 2186 | . 2 ⊢ 𝐸 = (𝑥 ∈ V ↦ (𝑥‘(𝐸‘ndx))) |
8 | 4, 7 | fnmpti 5316 | 1 ⊢ 𝐸 Fn V |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ↦ cmpt 4043 Fn wfn 5183 ‘cfv 5188 ℕcn 8857 ndxcnx 12391 Slot cslot 12393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-slot 12398 |
This theorem is referenced by: slotex 12421 basfn 12451 topontopn 12675 |
Copyright terms: Public domain | W3C validator |