![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > slotslfn | GIF version |
Description: A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.) (Revised by Jim Kingdon, 10-Feb-2023.) |
Ref | Expression |
---|---|
slotslfn.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
Ref | Expression |
---|---|
slotslfn | ⊢ 𝐸 Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2644 | . . 3 ⊢ 𝑥 ∈ V | |
2 | slotslfn.e | . . . 4 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
3 | 2 | simpri 112 | . . 3 ⊢ (𝐸‘ndx) ∈ ℕ |
4 | 1, 3 | fvex 5373 | . 2 ⊢ (𝑥‘(𝐸‘ndx)) ∈ V |
5 | 2 | simpli 110 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
6 | df-slot 11745 | . . 3 ⊢ Slot (𝐸‘ndx) = (𝑥 ∈ V ↦ (𝑥‘(𝐸‘ndx))) | |
7 | 5, 6 | eqtri 2120 | . 2 ⊢ 𝐸 = (𝑥 ∈ V ↦ (𝑥‘(𝐸‘ndx))) |
8 | 4, 7 | fnmpti 5187 | 1 ⊢ 𝐸 Fn V |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1299 ∈ wcel 1448 Vcvv 2641 ↦ cmpt 3929 Fn wfn 5054 ‘cfv 5059 ℕcn 8578 ndxcnx 11738 Slot cslot 11740 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-v 2643 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-iota 5024 df-fun 5061 df-fn 5062 df-fv 5067 df-slot 11745 |
This theorem is referenced by: slotex 11768 basfn 11798 topontopn 11986 |
Copyright terms: Public domain | W3C validator |