ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  slotslfn GIF version

Theorem slotslfn 12442
Description: A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.) (Revised by Jim Kingdon, 10-Feb-2023.)
Hypothesis
Ref Expression
slotslfn.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
Assertion
Ref Expression
slotslfn 𝐸 Fn V

Proof of Theorem slotslfn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 2733 . . 3 𝑥 ∈ V
2 slotslfn.e . . . 4 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
32simpri 112 . . 3 (𝐸‘ndx) ∈ ℕ
41, 3fvex 5516 . 2 (𝑥‘(𝐸‘ndx)) ∈ V
52simpli 110 . . 3 𝐸 = Slot (𝐸‘ndx)
6 df-slot 12420 . . 3 Slot (𝐸‘ndx) = (𝑥 ∈ V ↦ (𝑥‘(𝐸‘ndx)))
75, 6eqtri 2191 . 2 𝐸 = (𝑥 ∈ V ↦ (𝑥‘(𝐸‘ndx)))
84, 7fnmpti 5326 1 𝐸 Fn V
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1348  wcel 2141  Vcvv 2730  cmpt 4050   Fn wfn 5193  cfv 5198  cn 8878  ndxcnx 12413  Slot cslot 12415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-slot 12420
This theorem is referenced by:  slotex  12443  basfn  12473  topontopn  12829
  Copyright terms: Public domain W3C validator