ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  slotslfn GIF version

Theorem slotslfn 12891
Description: A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.) (Revised by Jim Kingdon, 10-Feb-2023.)
Hypothesis
Ref Expression
slotslfn.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
Assertion
Ref Expression
slotslfn 𝐸 Fn V

Proof of Theorem slotslfn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 2775 . . 3 𝑥 ∈ V
2 slotslfn.e . . . 4 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
32simpri 113 . . 3 (𝐸‘ndx) ∈ ℕ
41, 3fvex 5598 . 2 (𝑥‘(𝐸‘ndx)) ∈ V
52simpli 111 . . 3 𝐸 = Slot (𝐸‘ndx)
6 df-slot 12869 . . 3 Slot (𝐸‘ndx) = (𝑥 ∈ V ↦ (𝑥‘(𝐸‘ndx)))
75, 6eqtri 2226 . 2 𝐸 = (𝑥 ∈ V ↦ (𝑥‘(𝐸‘ndx)))
84, 7fnmpti 5406 1 𝐸 Fn V
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  wcel 2176  Vcvv 2772  cmpt 4106   Fn wfn 5267  cfv 5272  cn 9038  ndxcnx 12862  Slot cslot 12864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-iota 5233  df-fun 5274  df-fn 5275  df-fv 5280  df-slot 12869
This theorem is referenced by:  slotex  12892  basfn  12923  topontopn  14542
  Copyright terms: Public domain W3C validator