Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > egt2lt3 | GIF version |
Description: Euler's constant e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 28-Nov-2008.) (Revised by Jim Kingdon, 7-Jan-2023.) |
Ref | Expression |
---|---|
egt2lt3 | ⊢ (2 < e ∧ e < 3) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2170 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛))) = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛))) | |
2 | eqid 2170 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) | |
3 | 1, 2 | ege2le3 11634 | . . . 4 ⊢ (2 ≤ e ∧ e ≤ 3) |
4 | 3 | simpli 110 | . . 3 ⊢ 2 ≤ e |
5 | 2z 9240 | . . . . 5 ⊢ 2 ∈ ℤ | |
6 | zq 9585 | . . . . 5 ⊢ (2 ∈ ℤ → 2 ∈ ℚ) | |
7 | eirrap 11740 | . . . . 5 ⊢ (2 ∈ ℚ → e # 2) | |
8 | 5, 6, 7 | mp2b 8 | . . . 4 ⊢ e # 2 |
9 | ere 11633 | . . . . . 6 ⊢ e ∈ ℝ | |
10 | 9 | recni 7932 | . . . . 5 ⊢ e ∈ ℂ |
11 | 2cn 8949 | . . . . 5 ⊢ 2 ∈ ℂ | |
12 | apsym 8525 | . . . . 5 ⊢ ((e ∈ ℂ ∧ 2 ∈ ℂ) → (e # 2 ↔ 2 # e)) | |
13 | 10, 11, 12 | mp2an 424 | . . . 4 ⊢ (e # 2 ↔ 2 # e) |
14 | 8, 13 | mpbi 144 | . . 3 ⊢ 2 # e |
15 | 2re 8948 | . . . 4 ⊢ 2 ∈ ℝ | |
16 | ltleap 8551 | . . . 4 ⊢ ((2 ∈ ℝ ∧ e ∈ ℝ) → (2 < e ↔ (2 ≤ e ∧ 2 # e))) | |
17 | 15, 9, 16 | mp2an 424 | . . 3 ⊢ (2 < e ↔ (2 ≤ e ∧ 2 # e)) |
18 | 4, 14, 17 | mpbir2an 937 | . 2 ⊢ 2 < e |
19 | 3 | simpri 112 | . . 3 ⊢ e ≤ 3 |
20 | 3z 9241 | . . . 4 ⊢ 3 ∈ ℤ | |
21 | zq 9585 | . . . 4 ⊢ (3 ∈ ℤ → 3 ∈ ℚ) | |
22 | eirrap 11740 | . . . 4 ⊢ (3 ∈ ℚ → e # 3) | |
23 | 20, 21, 22 | mp2b 8 | . . 3 ⊢ e # 3 |
24 | 3re 8952 | . . . 4 ⊢ 3 ∈ ℝ | |
25 | ltleap 8551 | . . . 4 ⊢ ((e ∈ ℝ ∧ 3 ∈ ℝ) → (e < 3 ↔ (e ≤ 3 ∧ e # 3))) | |
26 | 9, 24, 25 | mp2an 424 | . . 3 ⊢ (e < 3 ↔ (e ≤ 3 ∧ e # 3)) |
27 | 19, 23, 26 | mpbir2an 937 | . 2 ⊢ e < 3 |
28 | 18, 27 | pm3.2i 270 | 1 ⊢ (2 < e ∧ e < 3) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∈ wcel 2141 class class class wbr 3989 ↦ cmpt 4050 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 ℝcr 7773 1c1 7775 · cmul 7779 < clt 7954 ≤ cle 7955 # cap 8500 / cdiv 8589 ℕcn 8878 2c2 8929 3c3 8930 ℕ0cn0 9135 ℤcz 9212 ℚcq 9578 ↑cexp 10475 !cfa 10659 eceu 11606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-frec 6370 df-1o 6395 df-oadd 6399 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-ico 9851 df-fz 9966 df-fzo 10099 df-seqfrec 10402 df-exp 10476 df-fac 10660 df-bc 10682 df-ihash 10710 df-shft 10779 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-clim 11242 df-sumdc 11317 df-ef 11611 df-e 11612 |
This theorem is referenced by: epos 11743 ene1 11747 eap1 11748 reeff1o 13488 |
Copyright terms: Public domain | W3C validator |