![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > egt2lt3 | GIF version |
Description: Euler's constant e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 28-Nov-2008.) (Revised by Jim Kingdon, 7-Jan-2023.) |
Ref | Expression |
---|---|
egt2lt3 | ⊢ (2 < e ∧ e < 3) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛))) = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛))) | |
2 | eqid 2193 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) | |
3 | 1, 2 | ege2le3 11817 | . . . 4 ⊢ (2 ≤ e ∧ e ≤ 3) |
4 | 3 | simpli 111 | . . 3 ⊢ 2 ≤ e |
5 | 2z 9348 | . . . . 5 ⊢ 2 ∈ ℤ | |
6 | zq 9694 | . . . . 5 ⊢ (2 ∈ ℤ → 2 ∈ ℚ) | |
7 | eirrap 11924 | . . . . 5 ⊢ (2 ∈ ℚ → e # 2) | |
8 | 5, 6, 7 | mp2b 8 | . . . 4 ⊢ e # 2 |
9 | ere 11816 | . . . . . 6 ⊢ e ∈ ℝ | |
10 | 9 | recni 8033 | . . . . 5 ⊢ e ∈ ℂ |
11 | 2cn 9055 | . . . . 5 ⊢ 2 ∈ ℂ | |
12 | apsym 8627 | . . . . 5 ⊢ ((e ∈ ℂ ∧ 2 ∈ ℂ) → (e # 2 ↔ 2 # e)) | |
13 | 10, 11, 12 | mp2an 426 | . . . 4 ⊢ (e # 2 ↔ 2 # e) |
14 | 8, 13 | mpbi 145 | . . 3 ⊢ 2 # e |
15 | 2re 9054 | . . . 4 ⊢ 2 ∈ ℝ | |
16 | ltleap 8653 | . . . 4 ⊢ ((2 ∈ ℝ ∧ e ∈ ℝ) → (2 < e ↔ (2 ≤ e ∧ 2 # e))) | |
17 | 15, 9, 16 | mp2an 426 | . . 3 ⊢ (2 < e ↔ (2 ≤ e ∧ 2 # e)) |
18 | 4, 14, 17 | mpbir2an 944 | . 2 ⊢ 2 < e |
19 | 3 | simpri 113 | . . 3 ⊢ e ≤ 3 |
20 | 3z 9349 | . . . 4 ⊢ 3 ∈ ℤ | |
21 | zq 9694 | . . . 4 ⊢ (3 ∈ ℤ → 3 ∈ ℚ) | |
22 | eirrap 11924 | . . . 4 ⊢ (3 ∈ ℚ → e # 3) | |
23 | 20, 21, 22 | mp2b 8 | . . 3 ⊢ e # 3 |
24 | 3re 9058 | . . . 4 ⊢ 3 ∈ ℝ | |
25 | ltleap 8653 | . . . 4 ⊢ ((e ∈ ℝ ∧ 3 ∈ ℝ) → (e < 3 ↔ (e ≤ 3 ∧ e # 3))) | |
26 | 9, 24, 25 | mp2an 426 | . . 3 ⊢ (e < 3 ↔ (e ≤ 3 ∧ e # 3)) |
27 | 19, 23, 26 | mpbir2an 944 | . 2 ⊢ e < 3 |
28 | 18, 27 | pm3.2i 272 | 1 ⊢ (2 < e ∧ e < 3) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2164 class class class wbr 4030 ↦ cmpt 4091 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 ℝcr 7873 1c1 7875 · cmul 7879 < clt 8056 ≤ cle 8057 # cap 8602 / cdiv 8693 ℕcn 8984 2c2 9035 3c3 9036 ℕ0cn0 9243 ℤcz 9320 ℚcq 9687 ↑cexp 10612 !cfa 10799 eceu 11789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-frec 6446 df-1o 6471 df-oadd 6475 df-er 6589 df-en 6797 df-dom 6798 df-fin 6799 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-ico 9963 df-fz 10078 df-fzo 10212 df-seqfrec 10522 df-exp 10613 df-fac 10800 df-bc 10822 df-ihash 10850 df-shft 10962 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-clim 11425 df-sumdc 11500 df-ef 11794 df-e 11795 |
This theorem is referenced by: epos 11927 ene1 11931 eap1 11932 reeff1o 14949 |
Copyright terms: Public domain | W3C validator |