| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > egt2lt3 | GIF version | ||
| Description: Euler's constant e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 28-Nov-2008.) (Revised by Jim Kingdon, 7-Jan-2023.) |
| Ref | Expression |
|---|---|
| egt2lt3 | ⊢ (2 < e ∧ e < 3) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛))) = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛))) | |
| 2 | eqid 2204 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) | |
| 3 | 1, 2 | ege2le3 11953 | . . . 4 ⊢ (2 ≤ e ∧ e ≤ 3) |
| 4 | 3 | simpli 111 | . . 3 ⊢ 2 ≤ e |
| 5 | 2z 9399 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 6 | zq 9746 | . . . . 5 ⊢ (2 ∈ ℤ → 2 ∈ ℚ) | |
| 7 | eirrap 12060 | . . . . 5 ⊢ (2 ∈ ℚ → e # 2) | |
| 8 | 5, 6, 7 | mp2b 8 | . . . 4 ⊢ e # 2 |
| 9 | ere 11952 | . . . . . 6 ⊢ e ∈ ℝ | |
| 10 | 9 | recni 8083 | . . . . 5 ⊢ e ∈ ℂ |
| 11 | 2cn 9106 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 12 | apsym 8678 | . . . . 5 ⊢ ((e ∈ ℂ ∧ 2 ∈ ℂ) → (e # 2 ↔ 2 # e)) | |
| 13 | 10, 11, 12 | mp2an 426 | . . . 4 ⊢ (e # 2 ↔ 2 # e) |
| 14 | 8, 13 | mpbi 145 | . . 3 ⊢ 2 # e |
| 15 | 2re 9105 | . . . 4 ⊢ 2 ∈ ℝ | |
| 16 | ltleap 8704 | . . . 4 ⊢ ((2 ∈ ℝ ∧ e ∈ ℝ) → (2 < e ↔ (2 ≤ e ∧ 2 # e))) | |
| 17 | 15, 9, 16 | mp2an 426 | . . 3 ⊢ (2 < e ↔ (2 ≤ e ∧ 2 # e)) |
| 18 | 4, 14, 17 | mpbir2an 944 | . 2 ⊢ 2 < e |
| 19 | 3 | simpri 113 | . . 3 ⊢ e ≤ 3 |
| 20 | 3z 9400 | . . . 4 ⊢ 3 ∈ ℤ | |
| 21 | zq 9746 | . . . 4 ⊢ (3 ∈ ℤ → 3 ∈ ℚ) | |
| 22 | eirrap 12060 | . . . 4 ⊢ (3 ∈ ℚ → e # 3) | |
| 23 | 20, 21, 22 | mp2b 8 | . . 3 ⊢ e # 3 |
| 24 | 3re 9109 | . . . 4 ⊢ 3 ∈ ℝ | |
| 25 | ltleap 8704 | . . . 4 ⊢ ((e ∈ ℝ ∧ 3 ∈ ℝ) → (e < 3 ↔ (e ≤ 3 ∧ e # 3))) | |
| 26 | 9, 24, 25 | mp2an 426 | . . 3 ⊢ (e < 3 ↔ (e ≤ 3 ∧ e # 3)) |
| 27 | 19, 23, 26 | mpbir2an 944 | . 2 ⊢ e < 3 |
| 28 | 18, 27 | pm3.2i 272 | 1 ⊢ (2 < e ∧ e < 3) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2175 class class class wbr 4043 ↦ cmpt 4104 ‘cfv 5270 (class class class)co 5943 ℂcc 7922 ℝcr 7923 1c1 7925 · cmul 7929 < clt 8106 ≤ cle 8107 # cap 8653 / cdiv 8744 ℕcn 9035 2c2 9086 3c3 9087 ℕ0cn0 9294 ℤcz 9371 ℚcq 9739 ↑cexp 10681 !cfa 10868 eceu 11925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-ico 10015 df-fz 10130 df-fzo 10264 df-seqfrec 10591 df-exp 10682 df-fac 10869 df-bc 10891 df-ihash 10919 df-shft 11097 df-cj 11124 df-re 11125 df-im 11126 df-rsqrt 11280 df-abs 11281 df-clim 11561 df-sumdc 11636 df-ef 11930 df-e 11931 |
| This theorem is referenced by: epos 12063 ene1 12067 eap1 12068 reeff1o 15216 |
| Copyright terms: Public domain | W3C validator |