Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > egt2lt3 | GIF version |
Description: Euler's constant e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 28-Nov-2008.) (Revised by Jim Kingdon, 7-Jan-2023.) |
Ref | Expression |
---|---|
egt2lt3 | ⊢ (2 < e ∧ e < 3) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2170 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛))) = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛))) | |
2 | eqid 2170 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) | |
3 | 1, 2 | ege2le3 11621 | . . . 4 ⊢ (2 ≤ e ∧ e ≤ 3) |
4 | 3 | simpli 110 | . . 3 ⊢ 2 ≤ e |
5 | 2z 9227 | . . . . 5 ⊢ 2 ∈ ℤ | |
6 | zq 9572 | . . . . 5 ⊢ (2 ∈ ℤ → 2 ∈ ℚ) | |
7 | eirrap 11727 | . . . . 5 ⊢ (2 ∈ ℚ → e # 2) | |
8 | 5, 6, 7 | mp2b 8 | . . . 4 ⊢ e # 2 |
9 | ere 11620 | . . . . . 6 ⊢ e ∈ ℝ | |
10 | 9 | recni 7919 | . . . . 5 ⊢ e ∈ ℂ |
11 | 2cn 8936 | . . . . 5 ⊢ 2 ∈ ℂ | |
12 | apsym 8512 | . . . . 5 ⊢ ((e ∈ ℂ ∧ 2 ∈ ℂ) → (e # 2 ↔ 2 # e)) | |
13 | 10, 11, 12 | mp2an 424 | . . . 4 ⊢ (e # 2 ↔ 2 # e) |
14 | 8, 13 | mpbi 144 | . . 3 ⊢ 2 # e |
15 | 2re 8935 | . . . 4 ⊢ 2 ∈ ℝ | |
16 | ltleap 8538 | . . . 4 ⊢ ((2 ∈ ℝ ∧ e ∈ ℝ) → (2 < e ↔ (2 ≤ e ∧ 2 # e))) | |
17 | 15, 9, 16 | mp2an 424 | . . 3 ⊢ (2 < e ↔ (2 ≤ e ∧ 2 # e)) |
18 | 4, 14, 17 | mpbir2an 937 | . 2 ⊢ 2 < e |
19 | 3 | simpri 112 | . . 3 ⊢ e ≤ 3 |
20 | 3z 9228 | . . . 4 ⊢ 3 ∈ ℤ | |
21 | zq 9572 | . . . 4 ⊢ (3 ∈ ℤ → 3 ∈ ℚ) | |
22 | eirrap 11727 | . . . 4 ⊢ (3 ∈ ℚ → e # 3) | |
23 | 20, 21, 22 | mp2b 8 | . . 3 ⊢ e # 3 |
24 | 3re 8939 | . . . 4 ⊢ 3 ∈ ℝ | |
25 | ltleap 8538 | . . . 4 ⊢ ((e ∈ ℝ ∧ 3 ∈ ℝ) → (e < 3 ↔ (e ≤ 3 ∧ e # 3))) | |
26 | 9, 24, 25 | mp2an 424 | . . 3 ⊢ (e < 3 ↔ (e ≤ 3 ∧ e # 3)) |
27 | 19, 23, 26 | mpbir2an 937 | . 2 ⊢ e < 3 |
28 | 18, 27 | pm3.2i 270 | 1 ⊢ (2 < e ∧ e < 3) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∈ wcel 2141 class class class wbr 3987 ↦ cmpt 4048 ‘cfv 5196 (class class class)co 5850 ℂcc 7759 ℝcr 7760 1c1 7762 · cmul 7766 < clt 7941 ≤ cle 7942 # cap 8487 / cdiv 8576 ℕcn 8865 2c2 8916 3c3 8917 ℕ0cn0 9122 ℤcz 9199 ℚcq 9565 ↑cexp 10462 !cfa 10646 eceu 11593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 ax-arch 7880 ax-caucvg 7881 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-irdg 6346 df-frec 6367 df-1o 6392 df-oadd 6396 df-er 6509 df-en 6715 df-dom 6716 df-fin 6717 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-2 8924 df-3 8925 df-4 8926 df-n0 9123 df-z 9200 df-uz 9475 df-q 9566 df-rp 9598 df-ico 9838 df-fz 9953 df-fzo 10086 df-seqfrec 10389 df-exp 10463 df-fac 10647 df-bc 10669 df-ihash 10697 df-shft 10766 df-cj 10793 df-re 10794 df-im 10795 df-rsqrt 10949 df-abs 10950 df-clim 11229 df-sumdc 11304 df-ef 11598 df-e 11599 |
This theorem is referenced by: epos 11730 ene1 11734 eap1 11735 reeff1o 13447 |
Copyright terms: Public domain | W3C validator |