ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfvd GIF version

Theorem strslfvd 13040
Description: Deduction version of strslfv 13043. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strslfvd.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
strfvd.s (𝜑𝑆𝑉)
strfvd.f (𝜑 → Fun 𝑆)
strfvd.n (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
Assertion
Ref Expression
strslfvd (𝜑𝐶 = (𝐸𝑆))

Proof of Theorem strslfvd
StepHypRef Expression
1 strslfvd.e . . . 4 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
21simpli 111 . . 3 𝐸 = Slot (𝐸‘ndx)
3 strfvd.s . . 3 (𝜑𝑆𝑉)
41simpri 113 . . . 4 (𝐸‘ndx) ∈ ℕ
54a1i 9 . . 3 (𝜑 → (𝐸‘ndx) ∈ ℕ)
62, 3, 5strnfvnd 13018 . 2 (𝜑 → (𝐸𝑆) = (𝑆‘(𝐸‘ndx)))
7 strfvd.f . . 3 (𝜑 → Fun 𝑆)
8 strfvd.n . . 3 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
9 funopfv 5645 . . 3 (Fun 𝑆 → (⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆 → (𝑆‘(𝐸‘ndx)) = 𝐶))
107, 8, 9sylc 62 . 2 (𝜑 → (𝑆‘(𝐸‘ndx)) = 𝐶)
116, 10eqtr2d 2243 1 (𝜑𝐶 = (𝐸𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  cop 3649  Fun wfun 5288  cfv 5294  cn 9078  ndxcnx 12995  Slot cslot 12997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-iota 5254  df-fun 5296  df-fv 5302  df-slot 13002
This theorem is referenced by:  strslssd  13045  1strbas  13116  2strbasg  13119  2stropg  13120
  Copyright terms: Public domain W3C validator