Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > strslfvd | GIF version |
Description: Deduction version of strslfv 12181. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 30-Jan-2023.) |
Ref | Expression |
---|---|
strslfvd.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
strfvd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
strfvd.f | ⊢ (𝜑 → Fun 𝑆) |
strfvd.n | ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
Ref | Expression |
---|---|
strslfvd | ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strslfvd.e | . . . 4 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
2 | 1 | simpli 110 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
3 | strfvd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
4 | 1 | simpri 112 | . . . 4 ⊢ (𝐸‘ndx) ∈ ℕ |
5 | 4 | a1i 9 | . . 3 ⊢ (𝜑 → (𝐸‘ndx) ∈ ℕ) |
6 | 2, 3, 5 | strnfvnd 12157 | . 2 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘(𝐸‘ndx))) |
7 | strfvd.f | . . 3 ⊢ (𝜑 → Fun 𝑆) | |
8 | strfvd.n | . . 3 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) | |
9 | funopfv 5501 | . . 3 ⊢ (Fun 𝑆 → (〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 → (𝑆‘(𝐸‘ndx)) = 𝐶)) | |
10 | 7, 8, 9 | sylc 62 | . 2 ⊢ (𝜑 → (𝑆‘(𝐸‘ndx)) = 𝐶) |
11 | 6, 10 | eqtr2d 2188 | 1 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1332 ∈ wcel 2125 〈cop 3559 Fun wfun 5157 ‘cfv 5163 ℕcn 8812 ndxcnx 12134 Slot cslot 12136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-sbc 2934 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-iota 5128 df-fun 5165 df-fv 5171 df-slot 12141 |
This theorem is referenced by: strslssd 12183 1strbas 12236 2strbasg 12238 2stropg 12239 |
Copyright terms: Public domain | W3C validator |