ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfvd GIF version

Theorem strslfvd 12720
Description: Deduction version of strslfv 12723. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strslfvd.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
strfvd.s (𝜑𝑆𝑉)
strfvd.f (𝜑 → Fun 𝑆)
strfvd.n (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
Assertion
Ref Expression
strslfvd (𝜑𝐶 = (𝐸𝑆))

Proof of Theorem strslfvd
StepHypRef Expression
1 strslfvd.e . . . 4 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
21simpli 111 . . 3 𝐸 = Slot (𝐸‘ndx)
3 strfvd.s . . 3 (𝜑𝑆𝑉)
41simpri 113 . . . 4 (𝐸‘ndx) ∈ ℕ
54a1i 9 . . 3 (𝜑 → (𝐸‘ndx) ∈ ℕ)
62, 3, 5strnfvnd 12698 . 2 (𝜑 → (𝐸𝑆) = (𝑆‘(𝐸‘ndx)))
7 strfvd.f . . 3 (𝜑 → Fun 𝑆)
8 strfvd.n . . 3 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
9 funopfv 5600 . . 3 (Fun 𝑆 → (⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆 → (𝑆‘(𝐸‘ndx)) = 𝐶))
107, 8, 9sylc 62 . 2 (𝜑 → (𝑆‘(𝐸‘ndx)) = 𝐶)
116, 10eqtr2d 2230 1 (𝜑𝐶 = (𝐸𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  cop 3625  Fun wfun 5252  cfv 5258  cn 8990  ndxcnx 12675  Slot cslot 12677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fv 5266  df-slot 12682
This theorem is referenced by:  strslssd  12725  1strbas  12795  2strbasg  12797  2stropg  12798
  Copyright terms: Public domain W3C validator