| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strslfvd | GIF version | ||
| Description: Deduction version of strslfv 13043. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 30-Jan-2023.) |
| Ref | Expression |
|---|---|
| strslfvd.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| strfvd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| strfvd.f | ⊢ (𝜑 → Fun 𝑆) |
| strfvd.n | ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| strslfvd | ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strslfvd.e | . . . 4 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 2 | 1 | simpli 111 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
| 3 | strfvd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 4 | 1 | simpri 113 | . . . 4 ⊢ (𝐸‘ndx) ∈ ℕ |
| 5 | 4 | a1i 9 | . . 3 ⊢ (𝜑 → (𝐸‘ndx) ∈ ℕ) |
| 6 | 2, 3, 5 | strnfvnd 13018 | . 2 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘(𝐸‘ndx))) |
| 7 | strfvd.f | . . 3 ⊢ (𝜑 → Fun 𝑆) | |
| 8 | strfvd.n | . . 3 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) | |
| 9 | funopfv 5645 | . . 3 ⊢ (Fun 𝑆 → (〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 → (𝑆‘(𝐸‘ndx)) = 𝐶)) | |
| 10 | 7, 8, 9 | sylc 62 | . 2 ⊢ (𝜑 → (𝑆‘(𝐸‘ndx)) = 𝐶) |
| 11 | 6, 10 | eqtr2d 2243 | 1 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 〈cop 3649 Fun wfun 5288 ‘cfv 5294 ℕcn 9078 ndxcnx 12995 Slot cslot 12997 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-iota 5254 df-fun 5296 df-fv 5302 df-slot 13002 |
| This theorem is referenced by: strslssd 13045 1strbas 13116 2strbasg 13119 2stropg 13120 |
| Copyright terms: Public domain | W3C validator |