ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfvd GIF version

Theorem strslfvd 11895
Description: Deduction version of strslfv 11898. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strslfvd.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
strfvd.s (𝜑𝑆𝑉)
strfvd.f (𝜑 → Fun 𝑆)
strfvd.n (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
Assertion
Ref Expression
strslfvd (𝜑𝐶 = (𝐸𝑆))

Proof of Theorem strslfvd
StepHypRef Expression
1 strslfvd.e . . . 4 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
21simpli 110 . . 3 𝐸 = Slot (𝐸‘ndx)
3 strfvd.s . . 3 (𝜑𝑆𝑉)
41simpri 112 . . . 4 (𝐸‘ndx) ∈ ℕ
54a1i 9 . . 3 (𝜑 → (𝐸‘ndx) ∈ ℕ)
62, 3, 5strnfvnd 11874 . 2 (𝜑 → (𝐸𝑆) = (𝑆‘(𝐸‘ndx)))
7 strfvd.f . . 3 (𝜑 → Fun 𝑆)
8 strfvd.n . . 3 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
9 funopfv 5427 . . 3 (Fun 𝑆 → (⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆 → (𝑆‘(𝐸‘ndx)) = 𝐶))
107, 8, 9sylc 62 . 2 (𝜑 → (𝑆‘(𝐸‘ndx)) = 𝐶)
116, 10eqtr2d 2149 1 (𝜑𝐶 = (𝐸𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1314  wcel 1463  cop 3498  Fun wfun 5085  cfv 5091  cn 8677  ndxcnx 11851  Slot cslot 11853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-sbc 2881  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-iota 5056  df-fun 5093  df-fv 5099  df-slot 11858
This theorem is referenced by:  strslssd  11900  1strbas  11953  2strbasg  11955  2stropg  11956
  Copyright terms: Public domain W3C validator