![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tan4thpi | GIF version |
Description: The tangent of π / 4. (Contributed by Mario Carneiro, 5-Apr-2015.) |
Ref | Expression |
---|---|
tan4thpi | ⊢ (tan‘(π / 4)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pire 14921 | . . . . 5 ⊢ π ∈ ℝ | |
2 | 4nn 9145 | . . . . 5 ⊢ 4 ∈ ℕ | |
3 | nndivre 9018 | . . . . 5 ⊢ ((π ∈ ℝ ∧ 4 ∈ ℕ) → (π / 4) ∈ ℝ) | |
4 | 1, 2, 3 | mp2an 426 | . . . 4 ⊢ (π / 4) ∈ ℝ |
5 | 4 | recni 8031 | . . 3 ⊢ (π / 4) ∈ ℂ |
6 | sincos4thpi 14975 | . . . . 5 ⊢ ((sin‘(π / 4)) = (1 / (√‘2)) ∧ (cos‘(π / 4)) = (1 / (√‘2))) | |
7 | 6 | simpri 113 | . . . 4 ⊢ (cos‘(π / 4)) = (1 / (√‘2)) |
8 | sqrt2re 12301 | . . . . . 6 ⊢ (√‘2) ∈ ℝ | |
9 | 8 | recni 8031 | . . . . 5 ⊢ (√‘2) ∈ ℂ |
10 | 2re 9052 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
11 | 2pos 9073 | . . . . . . 7 ⊢ 0 < 2 | |
12 | 10, 11 | sqrtgt0ii 11275 | . . . . . 6 ⊢ 0 < (√‘2) |
13 | 8, 12 | gt0ap0ii 8647 | . . . . 5 ⊢ (√‘2) # 0 |
14 | recap0 8704 | . . . . 5 ⊢ (((√‘2) ∈ ℂ ∧ (√‘2) # 0) → (1 / (√‘2)) # 0) | |
15 | 9, 13, 14 | mp2an 426 | . . . 4 ⊢ (1 / (√‘2)) # 0 |
16 | 7, 15 | eqbrtri 4050 | . . 3 ⊢ (cos‘(π / 4)) # 0 |
17 | tanvalap 11851 | . . 3 ⊢ (((π / 4) ∈ ℂ ∧ (cos‘(π / 4)) # 0) → (tan‘(π / 4)) = ((sin‘(π / 4)) / (cos‘(π / 4)))) | |
18 | 5, 16, 17 | mp2an 426 | . 2 ⊢ (tan‘(π / 4)) = ((sin‘(π / 4)) / (cos‘(π / 4))) |
19 | 6 | simpli 111 | . . 3 ⊢ (sin‘(π / 4)) = (1 / (√‘2)) |
20 | 19, 7 | oveq12i 5930 | . 2 ⊢ ((sin‘(π / 4)) / (cos‘(π / 4))) = ((1 / (√‘2)) / (1 / (√‘2))) |
21 | 9, 13 | recclapi 8761 | . . 3 ⊢ (1 / (√‘2)) ∈ ℂ |
22 | 21, 15 | dividapi 8764 | . 2 ⊢ ((1 / (√‘2)) / (1 / (√‘2))) = 1 |
23 | 18, 20, 22 | 3eqtri 2218 | 1 ⊢ (tan‘(π / 4)) = 1 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 ℂcc 7870 ℝcr 7871 0cc0 7872 1c1 7873 # cap 8600 / cdiv 8691 ℕcn 8982 2c2 9033 4c4 9035 √csqrt 11140 sincsin 11787 cosccos 11788 tanctan 11789 πcpi 11790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 ax-pre-suploc 7993 ax-addf 7994 ax-mulf 7995 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-disj 4007 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-of 6130 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-frec 6444 df-1o 6469 df-oadd 6473 df-er 6587 df-map 6704 df-pm 6705 df-en 6795 df-dom 6796 df-fin 6797 df-sup 7043 df-inf 7044 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-xneg 9838 df-xadd 9839 df-ioo 9958 df-ioc 9959 df-ico 9960 df-icc 9961 df-fz 10075 df-fzo 10209 df-seqfrec 10519 df-exp 10610 df-fac 10797 df-bc 10819 df-ihash 10847 df-shft 10959 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 df-sumdc 11497 df-ef 11791 df-sin 11793 df-cos 11794 df-tan 11795 df-pi 11796 df-rest 12852 df-topgen 12871 df-psmet 14039 df-xmet 14040 df-met 14041 df-bl 14042 df-mopn 14043 df-top 14166 df-topon 14179 df-bases 14211 df-ntr 14264 df-cn 14356 df-cnp 14357 df-tx 14421 df-cncf 14726 df-limced 14810 df-dvap 14811 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |