| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tan4thpi | GIF version | ||
| Description: The tangent of π / 4. (Contributed by Mario Carneiro, 5-Apr-2015.) |
| Ref | Expression |
|---|---|
| tan4thpi | ⊢ (tan‘(π / 4)) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pire 15106 | . . . . 5 ⊢ π ∈ ℝ | |
| 2 | 4nn 9171 | . . . . 5 ⊢ 4 ∈ ℕ | |
| 3 | nndivre 9043 | . . . . 5 ⊢ ((π ∈ ℝ ∧ 4 ∈ ℕ) → (π / 4) ∈ ℝ) | |
| 4 | 1, 2, 3 | mp2an 426 | . . . 4 ⊢ (π / 4) ∈ ℝ |
| 5 | 4 | recni 8055 | . . 3 ⊢ (π / 4) ∈ ℂ |
| 6 | sincos4thpi 15160 | . . . . 5 ⊢ ((sin‘(π / 4)) = (1 / (√‘2)) ∧ (cos‘(π / 4)) = (1 / (√‘2))) | |
| 7 | 6 | simpri 113 | . . . 4 ⊢ (cos‘(π / 4)) = (1 / (√‘2)) |
| 8 | sqrt2re 12356 | . . . . . 6 ⊢ (√‘2) ∈ ℝ | |
| 9 | 8 | recni 8055 | . . . . 5 ⊢ (√‘2) ∈ ℂ |
| 10 | 2re 9077 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 11 | 2pos 9098 | . . . . . . 7 ⊢ 0 < 2 | |
| 12 | 10, 11 | sqrtgt0ii 11313 | . . . . . 6 ⊢ 0 < (√‘2) |
| 13 | 8, 12 | gt0ap0ii 8672 | . . . . 5 ⊢ (√‘2) # 0 |
| 14 | recap0 8729 | . . . . 5 ⊢ (((√‘2) ∈ ℂ ∧ (√‘2) # 0) → (1 / (√‘2)) # 0) | |
| 15 | 9, 13, 14 | mp2an 426 | . . . 4 ⊢ (1 / (√‘2)) # 0 |
| 16 | 7, 15 | eqbrtri 4055 | . . 3 ⊢ (cos‘(π / 4)) # 0 |
| 17 | tanvalap 11890 | . . 3 ⊢ (((π / 4) ∈ ℂ ∧ (cos‘(π / 4)) # 0) → (tan‘(π / 4)) = ((sin‘(π / 4)) / (cos‘(π / 4)))) | |
| 18 | 5, 16, 17 | mp2an 426 | . 2 ⊢ (tan‘(π / 4)) = ((sin‘(π / 4)) / (cos‘(π / 4))) |
| 19 | 6 | simpli 111 | . . 3 ⊢ (sin‘(π / 4)) = (1 / (√‘2)) |
| 20 | 19, 7 | oveq12i 5937 | . 2 ⊢ ((sin‘(π / 4)) / (cos‘(π / 4))) = ((1 / (√‘2)) / (1 / (√‘2))) |
| 21 | 9, 13 | recclapi 8786 | . . 3 ⊢ (1 / (√‘2)) ∈ ℂ |
| 22 | 21, 15 | dividapi 8789 | . 2 ⊢ ((1 / (√‘2)) / (1 / (√‘2))) = 1 |
| 23 | 18, 20, 22 | 3eqtri 2221 | 1 ⊢ (tan‘(π / 4)) = 1 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 ℂcc 7894 ℝcr 7895 0cc0 7896 1c1 7897 # cap 8625 / cdiv 8716 ℕcn 9007 2c2 9058 4c4 9060 √csqrt 11178 sincsin 11826 cosccos 11827 tanctan 11828 πcpi 11829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 ax-pre-suploc 8017 ax-addf 8018 ax-mulf 8019 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-disj 4012 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-of 6139 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-oadd 6487 df-er 6601 df-map 6718 df-pm 6719 df-en 6809 df-dom 6810 df-fin 6811 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-xneg 9864 df-xadd 9865 df-ioo 9984 df-ioc 9985 df-ico 9986 df-icc 9987 df-fz 10101 df-fzo 10235 df-seqfrec 10557 df-exp 10648 df-fac 10835 df-bc 10857 df-ihash 10885 df-shft 10997 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-sumdc 11536 df-ef 11830 df-sin 11832 df-cos 11833 df-tan 11834 df-pi 11835 df-rest 12943 df-topgen 12962 df-psmet 14175 df-xmet 14176 df-met 14177 df-bl 14178 df-mopn 14179 df-top 14318 df-topon 14331 df-bases 14363 df-ntr 14416 df-cn 14508 df-cnp 14509 df-tx 14573 df-cncf 14891 df-limced 14976 df-dvap 14977 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |