ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndxid GIF version

Theorem ndxid 12488
Description: A structure component extractor is defined by its own index. This theorem, together with strslfv 12509 below, is useful for avoiding direct reference to the hard-coded numeric index in component extractor definitions, such as the 1 in df-base 12470, making it easier to change should the need arise.

(Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.)

Hypotheses
Ref Expression
ndxarg.1 𝐸 = Slot 𝑁
ndxarg.2 𝑁 ∈ β„•
Assertion
Ref Expression
ndxid 𝐸 = Slot (πΈβ€˜ndx)

Proof of Theorem ndxid
StepHypRef Expression
1 ndxarg.1 . . . 4 𝐸 = Slot 𝑁
2 ndxarg.2 . . . 4 𝑁 ∈ β„•
31, 2ndxarg 12487 . . 3 (πΈβ€˜ndx) = 𝑁
43eqcomi 2181 . 2 𝑁 = (πΈβ€˜ndx)
5 sloteq 12469 . . 3 (𝑁 = (πΈβ€˜ndx) β†’ Slot 𝑁 = Slot (πΈβ€˜ndx))
61, 5eqtrid 2222 . 2 (𝑁 = (πΈβ€˜ndx) β†’ 𝐸 = Slot (πΈβ€˜ndx))
74, 6ax-mp 5 1 𝐸 = Slot (πΈβ€˜ndx)
Colors of variables: wff set class
Syntax hints:   = wceq 1353   ∈ wcel 2148  β€˜cfv 5218  β„•cn 8921  ndxcnx 12461  Slot cslot 12463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fv 5226  df-inn 8922  df-ndx 12467  df-slot 12468
This theorem is referenced by:  ndxslid  12489  strndxid  12492  baseid  12518  plusgid  12571  mulridx  12591  starvid  12600  scaid  12612  vscaid  12618  ipid  12630  tsetid  12647  pleid  12661  dsid  12672  unifid  12683  homid  12689  ccoid  12691
  Copyright terms: Public domain W3C validator