| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ndxid | GIF version | ||
| Description: A structure component
extractor is defined by its own index.  This
       theorem, together with strslfv 12723 below, is useful for avoiding direct
       reference to the hard-coded numeric index in component extractor
       definitions, such as the 1 in df-base 12684, making it easier to change
       should the need arise.
 (Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.)  | 
| Ref | Expression | 
|---|---|
| ndxarg.1 | ⊢ 𝐸 = Slot 𝑁 | 
| ndxarg.2 | ⊢ 𝑁 ∈ ℕ | 
| Ref | Expression | 
|---|---|
| ndxid | ⊢ 𝐸 = Slot (𝐸‘ndx) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ndxarg.1 | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | ndxarg.2 | . . . 4 ⊢ 𝑁 ∈ ℕ | |
| 3 | 1, 2 | ndxarg 12701 | . . 3 ⊢ (𝐸‘ndx) = 𝑁 | 
| 4 | 3 | eqcomi 2200 | . 2 ⊢ 𝑁 = (𝐸‘ndx) | 
| 5 | sloteq 12683 | . . 3 ⊢ (𝑁 = (𝐸‘ndx) → Slot 𝑁 = Slot (𝐸‘ndx)) | |
| 6 | 1, 5 | eqtrid 2241 | . 2 ⊢ (𝑁 = (𝐸‘ndx) → 𝐸 = Slot (𝐸‘ndx)) | 
| 7 | 4, 6 | ax-mp 5 | 1 ⊢ 𝐸 = Slot (𝐸‘ndx) | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 ‘cfv 5258 ℕcn 8990 ndxcnx 12675 Slot cslot 12677 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fv 5266 df-inn 8991 df-ndx 12681 df-slot 12682 | 
| This theorem is referenced by: ndxslid 12703 strndxid 12706 baseid 12732 plusgid 12788 mulridx 12808 starvid 12817 scaid 12829 vscaid 12835 ipid 12847 tsetid 12864 pleid 12878 dsid 12889 unifid 12900 homid 12906 ccoid 12908 | 
| Copyright terms: Public domain | W3C validator |