| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ndxid | GIF version | ||
| Description: A structure component
extractor is defined by its own index. This
theorem, together with strslfv 12952 below, is useful for avoiding direct
reference to the hard-coded numeric index in component extractor
definitions, such as the 1 in df-base 12913, making it easier to change
should the need arise.
(Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.) |
| Ref | Expression |
|---|---|
| ndxarg.1 | ⊢ 𝐸 = Slot 𝑁 |
| ndxarg.2 | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| ndxid | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndxarg.1 | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | ndxarg.2 | . . . 4 ⊢ 𝑁 ∈ ℕ | |
| 3 | 1, 2 | ndxarg 12930 | . . 3 ⊢ (𝐸‘ndx) = 𝑁 |
| 4 | 3 | eqcomi 2210 | . 2 ⊢ 𝑁 = (𝐸‘ndx) |
| 5 | sloteq 12912 | . . 3 ⊢ (𝑁 = (𝐸‘ndx) → Slot 𝑁 = Slot (𝐸‘ndx)) | |
| 6 | 1, 5 | eqtrid 2251 | . 2 ⊢ (𝑁 = (𝐸‘ndx) → 𝐸 = Slot (𝐸‘ndx)) |
| 7 | 4, 6 | ax-mp 5 | 1 ⊢ 𝐸 = Slot (𝐸‘ndx) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 ‘cfv 5280 ℕcn 9056 ndxcnx 12904 Slot cslot 12906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fv 5288 df-inn 9057 df-ndx 12910 df-slot 12911 |
| This theorem is referenced by: ndxslid 12932 strndxid 12935 baseid 12961 plusgid 13017 mulridx 13038 starvid 13047 scaid 13059 vscaid 13065 ipid 13077 tsetid 13094 pleid 13108 ocid 13119 dsid 13123 unifid 13134 homid 13141 ccoid 13144 edgfid 15680 |
| Copyright terms: Public domain | W3C validator |