![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ndxid | GIF version |
Description: A structure component
extractor is defined by its own index. This
theorem, together with strslfv 12663 below, is useful for avoiding direct
reference to the hard-coded numeric index in component extractor
definitions, such as the 1 in df-base 12624, making it easier to change
should the need arise.
(Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.) |
Ref | Expression |
---|---|
ndxarg.1 | ⊢ 𝐸 = Slot 𝑁 |
ndxarg.2 | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
ndxid | ⊢ 𝐸 = Slot (𝐸‘ndx) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndxarg.1 | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
2 | ndxarg.2 | . . . 4 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxarg 12641 | . . 3 ⊢ (𝐸‘ndx) = 𝑁 |
4 | 3 | eqcomi 2197 | . 2 ⊢ 𝑁 = (𝐸‘ndx) |
5 | sloteq 12623 | . . 3 ⊢ (𝑁 = (𝐸‘ndx) → Slot 𝑁 = Slot (𝐸‘ndx)) | |
6 | 1, 5 | eqtrid 2238 | . 2 ⊢ (𝑁 = (𝐸‘ndx) → 𝐸 = Slot (𝐸‘ndx)) |
7 | 4, 6 | ax-mp 5 | 1 ⊢ 𝐸 = Slot (𝐸‘ndx) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 ‘cfv 5254 ℕcn 8982 ndxcnx 12615 Slot cslot 12617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fv 5262 df-inn 8983 df-ndx 12621 df-slot 12622 |
This theorem is referenced by: ndxslid 12643 strndxid 12646 baseid 12672 plusgid 12728 mulridx 12748 starvid 12757 scaid 12769 vscaid 12775 ipid 12787 tsetid 12804 pleid 12818 dsid 12829 unifid 12840 homid 12846 ccoid 12848 |
Copyright terms: Public domain | W3C validator |