ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndxid GIF version

Theorem ndxid 12418
Description: A structure component extractor is defined by its own index. This theorem, together with strslfv 12438 below, is useful for avoiding direct reference to the hard-coded numeric index in component extractor definitions, such as the 1 in df-base 12400, making it easier to change should the need arise.

(Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.)

Hypotheses
Ref Expression
ndxarg.1 𝐸 = Slot 𝑁
ndxarg.2 𝑁 ∈ ℕ
Assertion
Ref Expression
ndxid 𝐸 = Slot (𝐸‘ndx)

Proof of Theorem ndxid
StepHypRef Expression
1 ndxarg.1 . . . 4 𝐸 = Slot 𝑁
2 ndxarg.2 . . . 4 𝑁 ∈ ℕ
31, 2ndxarg 12417 . . 3 (𝐸‘ndx) = 𝑁
43eqcomi 2169 . 2 𝑁 = (𝐸‘ndx)
5 sloteq 12399 . . 3 (𝑁 = (𝐸‘ndx) → Slot 𝑁 = Slot (𝐸‘ndx))
61, 5syl5eq 2211 . 2 (𝑁 = (𝐸‘ndx) → 𝐸 = Slot (𝐸‘ndx))
74, 6ax-mp 5 1 𝐸 = Slot (𝐸‘ndx)
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wcel 2136  cfv 5188  cn 8857  ndxcnx 12391  Slot cslot 12393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fv 5196  df-inn 8858  df-ndx 12397  df-slot 12398
This theorem is referenced by:  ndxslid  12419  strndxid  12422  baseid  12447  plusgid  12489  mulrid  12506  starvid  12515  scaid  12523  vscaid  12526  ipid  12534  tsetid  12544  pleid  12551  dsid  12554
  Copyright terms: Public domain W3C validator