| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ndxid | GIF version | ||
| Description: A structure component
extractor is defined by its own index. This
theorem, together with strslfv 13072 below, is useful for avoiding direct
reference to the hard-coded numeric index in component extractor
definitions, such as the 1 in df-base 13033, making it easier to change
should the need arise.
(Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.) |
| Ref | Expression |
|---|---|
| ndxarg.1 | ⊢ 𝐸 = Slot 𝑁 |
| ndxarg.2 | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| ndxid | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndxarg.1 | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | ndxarg.2 | . . . 4 ⊢ 𝑁 ∈ ℕ | |
| 3 | 1, 2 | ndxarg 13050 | . . 3 ⊢ (𝐸‘ndx) = 𝑁 |
| 4 | 3 | eqcomi 2233 | . 2 ⊢ 𝑁 = (𝐸‘ndx) |
| 5 | sloteq 13032 | . . 3 ⊢ (𝑁 = (𝐸‘ndx) → Slot 𝑁 = Slot (𝐸‘ndx)) | |
| 6 | 1, 5 | eqtrid 2274 | . 2 ⊢ (𝑁 = (𝐸‘ndx) → 𝐸 = Slot (𝐸‘ndx)) |
| 7 | 4, 6 | ax-mp 5 | 1 ⊢ 𝐸 = Slot (𝐸‘ndx) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 ‘cfv 5317 ℕcn 9106 ndxcnx 13024 Slot cslot 13026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fv 5325 df-inn 9107 df-ndx 13030 df-slot 13031 |
| This theorem is referenced by: ndxslid 13052 strndxid 13055 baseid 13081 plusgid 13138 mulridx 13159 starvid 13168 scaid 13180 vscaid 13186 ipid 13198 tsetid 13215 pleid 13229 ocid 13240 dsid 13244 unifid 13255 homid 13262 ccoid 13265 edgfid 15801 |
| Copyright terms: Public domain | W3C validator |