Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > permnn | GIF version |
Description: The number of permutations of 𝑁 − 𝑅 objects from a collection of 𝑁 objects is a positive integer. (Contributed by Jason Orendorff, 24-Jan-2007.) |
Ref | Expression |
---|---|
permnn | ⊢ (𝑅 ∈ (0...𝑁) → ((!‘𝑁) / (!‘𝑅)) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfznn0 10070 | . . 3 ⊢ (𝑅 ∈ (0...𝑁) → 𝑅 ∈ ℕ0) | |
2 | 1 | faccld 10670 | . 2 ⊢ (𝑅 ∈ (0...𝑁) → (!‘𝑅) ∈ ℕ) |
3 | fznn0sub 10013 | . . . 4 ⊢ (𝑅 ∈ (0...𝑁) → (𝑁 − 𝑅) ∈ ℕ0) | |
4 | 3 | faccld 10670 | . . 3 ⊢ (𝑅 ∈ (0...𝑁) → (!‘(𝑁 − 𝑅)) ∈ ℕ) |
5 | 4, 2 | nnmulcld 8927 | . 2 ⊢ (𝑅 ∈ (0...𝑁) → ((!‘(𝑁 − 𝑅)) · (!‘𝑅)) ∈ ℕ) |
6 | elfz3nn0 10071 | . . 3 ⊢ (𝑅 ∈ (0...𝑁) → 𝑁 ∈ ℕ0) | |
7 | faccl 10669 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) | |
8 | 7 | nncnd 8892 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ) |
9 | 6, 8 | syl 14 | . 2 ⊢ (𝑅 ∈ (0...𝑁) → (!‘𝑁) ∈ ℂ) |
10 | 4 | nncnd 8892 | . . . 4 ⊢ (𝑅 ∈ (0...𝑁) → (!‘(𝑁 − 𝑅)) ∈ ℂ) |
11 | 2 | nncnd 8892 | . . . 4 ⊢ (𝑅 ∈ (0...𝑁) → (!‘𝑅) ∈ ℂ) |
12 | 2 | nnap0d 8924 | . . . 4 ⊢ (𝑅 ∈ (0...𝑁) → (!‘𝑅) # 0) |
13 | 10, 11, 12 | divcanap4d 8713 | . . 3 ⊢ (𝑅 ∈ (0...𝑁) → (((!‘(𝑁 − 𝑅)) · (!‘𝑅)) / (!‘𝑅)) = (!‘(𝑁 − 𝑅))) |
14 | 13, 4 | eqeltrd 2247 | . 2 ⊢ (𝑅 ∈ (0...𝑁) → (((!‘(𝑁 − 𝑅)) · (!‘𝑅)) / (!‘𝑅)) ∈ ℕ) |
15 | bcval2 10684 | . . 3 ⊢ (𝑅 ∈ (0...𝑁) → (𝑁C𝑅) = ((!‘𝑁) / ((!‘(𝑁 − 𝑅)) · (!‘𝑅)))) | |
16 | bccl2 10702 | . . 3 ⊢ (𝑅 ∈ (0...𝑁) → (𝑁C𝑅) ∈ ℕ) | |
17 | 15, 16 | eqeltrrd 2248 | . 2 ⊢ (𝑅 ∈ (0...𝑁) → ((!‘𝑁) / ((!‘(𝑁 − 𝑅)) · (!‘𝑅))) ∈ ℕ) |
18 | nndivtr 8920 | . 2 ⊢ ((((!‘𝑅) ∈ ℕ ∧ ((!‘(𝑁 − 𝑅)) · (!‘𝑅)) ∈ ℕ ∧ (!‘𝑁) ∈ ℂ) ∧ ((((!‘(𝑁 − 𝑅)) · (!‘𝑅)) / (!‘𝑅)) ∈ ℕ ∧ ((!‘𝑁) / ((!‘(𝑁 − 𝑅)) · (!‘𝑅))) ∈ ℕ)) → ((!‘𝑁) / (!‘𝑅)) ∈ ℕ) | |
19 | 2, 5, 9, 14, 17, 18 | syl32anc 1241 | 1 ⊢ (𝑅 ∈ (0...𝑁) → ((!‘𝑁) / (!‘𝑅)) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 0cc0 7774 · cmul 7779 − cmin 8090 / cdiv 8589 ℕcn 8878 ℕ0cn0 9135 ...cfz 9965 !cfa 10659 Ccbc 10681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-fz 9966 df-seqfrec 10402 df-fac 10660 df-bc 10682 |
This theorem is referenced by: eirraplem 11739 |
Copyright terms: Public domain | W3C validator |