| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfabsmax | GIF version | ||
| Description: Absolute value of a real number in terms of maximum. Definition 3.13 of [Geuvers], p. 11. (Contributed by BJ and Jim Kingdon, 21-Dec-2021.) |
| Ref | Expression |
|---|---|
| dfabsmax | ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = sup({𝐴, -𝐴}, ℝ, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
| 2 | renegcl 8353 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 3 | maxcl 11596 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → sup({𝐴, -𝐴}, ℝ, < ) ∈ ℝ) | |
| 4 | 2, 3 | mpdan 421 | . . . 4 ⊢ (𝐴 ∈ ℝ → sup({𝐴, -𝐴}, ℝ, < ) ∈ ℝ) |
| 5 | maxle2 11598 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → -𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )) | |
| 6 | 2, 5 | mpdan 421 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )) |
| 7 | 1, 4, 6 | lenegcon1d 8620 | . . 3 ⊢ (𝐴 ∈ ℝ → -sup({𝐴, -𝐴}, ℝ, < ) ≤ 𝐴) |
| 8 | maxle1 11597 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → 𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )) | |
| 9 | 2, 8 | mpdan 421 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )) |
| 10 | absle 11475 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ sup({𝐴, -𝐴}, ℝ, < ) ∈ ℝ) → ((abs‘𝐴) ≤ sup({𝐴, -𝐴}, ℝ, < ) ↔ (-sup({𝐴, -𝐴}, ℝ, < ) ≤ 𝐴 ∧ 𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )))) | |
| 11 | 4, 10 | mpdan 421 | . . 3 ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴) ≤ sup({𝐴, -𝐴}, ℝ, < ) ↔ (-sup({𝐴, -𝐴}, ℝ, < ) ≤ 𝐴 ∧ 𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )))) |
| 12 | 7, 9, 11 | mpbir2and 947 | . 2 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) ≤ sup({𝐴, -𝐴}, ℝ, < )) |
| 13 | recn 8078 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 14 | 13 | abscld 11567 | . . 3 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ) |
| 15 | leabs 11460 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) | |
| 16 | 2 | leabsd 11547 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝐴 ≤ (abs‘-𝐴)) |
| 17 | 13 | absnegd 11575 | . . . 4 ⊢ (𝐴 ∈ ℝ → (abs‘-𝐴) = (abs‘𝐴)) |
| 18 | 16, 17 | breqtrd 4077 | . . 3 ⊢ (𝐴 ∈ ℝ → -𝐴 ≤ (abs‘𝐴)) |
| 19 | maxleast 11599 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) ∧ (𝐴 ≤ (abs‘𝐴) ∧ -𝐴 ≤ (abs‘𝐴))) → sup({𝐴, -𝐴}, ℝ, < ) ≤ (abs‘𝐴)) | |
| 20 | 1, 2, 14, 15, 18, 19 | syl32anc 1258 | . 2 ⊢ (𝐴 ∈ ℝ → sup({𝐴, -𝐴}, ℝ, < ) ≤ (abs‘𝐴)) |
| 21 | 14, 4 | letri3d 8208 | . 2 ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴) = sup({𝐴, -𝐴}, ℝ, < ) ↔ ((abs‘𝐴) ≤ sup({𝐴, -𝐴}, ℝ, < ) ∧ sup({𝐴, -𝐴}, ℝ, < ) ≤ (abs‘𝐴)))) |
| 22 | 12, 20, 21 | mpbir2and 947 | 1 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = sup({𝐴, -𝐴}, ℝ, < )) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 {cpr 3639 class class class wbr 4051 ‘cfv 5280 supcsup 7099 ℝcr 7944 < clt 8127 ≤ cle 8128 -cneg 8264 abscabs 11383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-sup 7101 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-n0 9316 df-z 9393 df-uz 9669 df-rp 9796 df-seqfrec 10615 df-exp 10706 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |