Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfabsmax | GIF version |
Description: Absolute value of a real number in terms of maximum. Definition 3.13 of [Geuvers], p. 11. (Contributed by BJ and Jim Kingdon, 21-Dec-2021.) |
Ref | Expression |
---|---|
dfabsmax | ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = sup({𝐴, -𝐴}, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
2 | renegcl 8180 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
3 | maxcl 11174 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → sup({𝐴, -𝐴}, ℝ, < ) ∈ ℝ) | |
4 | 2, 3 | mpdan 419 | . . . 4 ⊢ (𝐴 ∈ ℝ → sup({𝐴, -𝐴}, ℝ, < ) ∈ ℝ) |
5 | maxle2 11176 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → -𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )) | |
6 | 2, 5 | mpdan 419 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )) |
7 | 1, 4, 6 | lenegcon1d 8446 | . . 3 ⊢ (𝐴 ∈ ℝ → -sup({𝐴, -𝐴}, ℝ, < ) ≤ 𝐴) |
8 | maxle1 11175 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → 𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )) | |
9 | 2, 8 | mpdan 419 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )) |
10 | absle 11053 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ sup({𝐴, -𝐴}, ℝ, < ) ∈ ℝ) → ((abs‘𝐴) ≤ sup({𝐴, -𝐴}, ℝ, < ) ↔ (-sup({𝐴, -𝐴}, ℝ, < ) ≤ 𝐴 ∧ 𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )))) | |
11 | 4, 10 | mpdan 419 | . . 3 ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴) ≤ sup({𝐴, -𝐴}, ℝ, < ) ↔ (-sup({𝐴, -𝐴}, ℝ, < ) ≤ 𝐴 ∧ 𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )))) |
12 | 7, 9, 11 | mpbir2and 939 | . 2 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) ≤ sup({𝐴, -𝐴}, ℝ, < )) |
13 | recn 7907 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
14 | 13 | abscld 11145 | . . 3 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ) |
15 | leabs 11038 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) | |
16 | 2 | leabsd 11125 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝐴 ≤ (abs‘-𝐴)) |
17 | 13 | absnegd 11153 | . . . 4 ⊢ (𝐴 ∈ ℝ → (abs‘-𝐴) = (abs‘𝐴)) |
18 | 16, 17 | breqtrd 4015 | . . 3 ⊢ (𝐴 ∈ ℝ → -𝐴 ≤ (abs‘𝐴)) |
19 | maxleast 11177 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) ∧ (𝐴 ≤ (abs‘𝐴) ∧ -𝐴 ≤ (abs‘𝐴))) → sup({𝐴, -𝐴}, ℝ, < ) ≤ (abs‘𝐴)) | |
20 | 1, 2, 14, 15, 18, 19 | syl32anc 1241 | . 2 ⊢ (𝐴 ∈ ℝ → sup({𝐴, -𝐴}, ℝ, < ) ≤ (abs‘𝐴)) |
21 | 14, 4 | letri3d 8035 | . 2 ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴) = sup({𝐴, -𝐴}, ℝ, < ) ↔ ((abs‘𝐴) ≤ sup({𝐴, -𝐴}, ℝ, < ) ∧ sup({𝐴, -𝐴}, ℝ, < ) ≤ (abs‘𝐴)))) |
22 | 12, 20, 21 | mpbir2and 939 | 1 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = sup({𝐴, -𝐴}, ℝ, < )) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 {cpr 3584 class class class wbr 3989 ‘cfv 5198 supcsup 6959 ℝcr 7773 < clt 7954 ≤ cle 7955 -cneg 8091 abscabs 10961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-sup 6961 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-rp 9611 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |