Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfabsmax GIF version

Theorem dfabsmax 11013
 Description: Absolute value of a real number in terms of maximum. Definition 3.13 of [Geuvers], p. 11. (Contributed by BJ and Jim Kingdon, 21-Dec-2021.)
Assertion
Ref Expression
dfabsmax (𝐴 ∈ ℝ → (abs‘𝐴) = sup({𝐴, -𝐴}, ℝ, < ))

Proof of Theorem dfabsmax
StepHypRef Expression
1 id 19 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
2 renegcl 8042 . . . . 5 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
3 maxcl 11006 . . . . 5 ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → sup({𝐴, -𝐴}, ℝ, < ) ∈ ℝ)
42, 3mpdan 417 . . . 4 (𝐴 ∈ ℝ → sup({𝐴, -𝐴}, ℝ, < ) ∈ ℝ)
5 maxle2 11008 . . . . 5 ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → -𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < ))
62, 5mpdan 417 . . . 4 (𝐴 ∈ ℝ → -𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < ))
71, 4, 6lenegcon1d 8308 . . 3 (𝐴 ∈ ℝ → -sup({𝐴, -𝐴}, ℝ, < ) ≤ 𝐴)
8 maxle1 11007 . . . 4 ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → 𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < ))
92, 8mpdan 417 . . 3 (𝐴 ∈ ℝ → 𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < ))
10 absle 10885 . . . 4 ((𝐴 ∈ ℝ ∧ sup({𝐴, -𝐴}, ℝ, < ) ∈ ℝ) → ((abs‘𝐴) ≤ sup({𝐴, -𝐴}, ℝ, < ) ↔ (-sup({𝐴, -𝐴}, ℝ, < ) ≤ 𝐴𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < ))))
114, 10mpdan 417 . . 3 (𝐴 ∈ ℝ → ((abs‘𝐴) ≤ sup({𝐴, -𝐴}, ℝ, < ) ↔ (-sup({𝐴, -𝐴}, ℝ, < ) ≤ 𝐴𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < ))))
127, 9, 11mpbir2and 928 . 2 (𝐴 ∈ ℝ → (abs‘𝐴) ≤ sup({𝐴, -𝐴}, ℝ, < ))
13 recn 7772 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1413abscld 10977 . . 3 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ)
15 leabs 10870 . . 3 (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴))
162leabsd 10957 . . . 4 (𝐴 ∈ ℝ → -𝐴 ≤ (abs‘-𝐴))
1713absnegd 10985 . . . 4 (𝐴 ∈ ℝ → (abs‘-𝐴) = (abs‘𝐴))
1816, 17breqtrd 3957 . . 3 (𝐴 ∈ ℝ → -𝐴 ≤ (abs‘𝐴))
19 maxleast 11009 . . 3 (((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) ∧ (𝐴 ≤ (abs‘𝐴) ∧ -𝐴 ≤ (abs‘𝐴))) → sup({𝐴, -𝐴}, ℝ, < ) ≤ (abs‘𝐴))
201, 2, 14, 15, 18, 19syl32anc 1224 . 2 (𝐴 ∈ ℝ → sup({𝐴, -𝐴}, ℝ, < ) ≤ (abs‘𝐴))
2114, 4letri3d 7898 . 2 (𝐴 ∈ ℝ → ((abs‘𝐴) = sup({𝐴, -𝐴}, ℝ, < ) ↔ ((abs‘𝐴) ≤ sup({𝐴, -𝐴}, ℝ, < ) ∧ sup({𝐴, -𝐴}, ℝ, < ) ≤ (abs‘𝐴))))
2212, 20, 21mpbir2and 928 1 (𝐴 ∈ ℝ → (abs‘𝐴) = sup({𝐴, -𝐴}, ℝ, < ))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1331   ∈ wcel 1480  {cpr 3528   class class class wbr 3932  ‘cfv 5126  supcsup 6872  ℝcr 7638   < clt 7819   ≤ cle 7820  -cneg 7953  abscabs 10793 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4046  ax-sep 4049  ax-nul 4057  ax-pow 4101  ax-pr 4134  ax-un 4358  ax-setind 4455  ax-iinf 4505  ax-cnex 7730  ax-resscn 7731  ax-1cn 7732  ax-1re 7733  ax-icn 7734  ax-addcl 7735  ax-addrcl 7736  ax-mulcl 7737  ax-mulrcl 7738  ax-addcom 7739  ax-mulcom 7740  ax-addass 7741  ax-mulass 7742  ax-distr 7743  ax-i2m1 7744  ax-0lt1 7745  ax-1rid 7746  ax-0id 7747  ax-rnegex 7748  ax-precex 7749  ax-cnre 7750  ax-pre-ltirr 7751  ax-pre-ltwlin 7752  ax-pre-lttrn 7753  ax-pre-apti 7754  ax-pre-ltadd 7755  ax-pre-mulgt0 7756  ax-pre-mulext 7757  ax-arch 7758  ax-caucvg 7759 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3740  df-int 3775  df-iun 3818  df-br 3933  df-opab 3993  df-mpt 3994  df-tr 4030  df-id 4218  df-po 4221  df-iso 4222  df-iord 4291  df-on 4293  df-ilim 4294  df-suc 4296  df-iom 4508  df-xp 4548  df-rel 4549  df-cnv 4550  df-co 4551  df-dm 4552  df-rn 4553  df-res 4554  df-ima 4555  df-iota 5091  df-fun 5128  df-fn 5129  df-f 5130  df-f1 5131  df-fo 5132  df-f1o 5133  df-fv 5134  df-riota 5733  df-ov 5780  df-oprab 5781  df-mpo 5782  df-1st 6041  df-2nd 6042  df-recs 6205  df-frec 6291  df-sup 6874  df-pnf 7821  df-mnf 7822  df-xr 7823  df-ltxr 7824  df-le 7825  df-sub 7954  df-neg 7955  df-reap 8356  df-ap 8363  df-div 8452  df-inn 8740  df-2 8798  df-3 8799  df-4 8800  df-n0 8997  df-z 9074  df-uz 9346  df-rp 9464  df-seqfrec 10243  df-exp 10317  df-cj 10638  df-re 10639  df-im 10640  df-rsqrt 10794  df-abs 10795 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator