![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfabsmax | GIF version |
Description: Absolute value of a real number in terms of maximum. Definition 3.13 of [Geuvers], p. 11. (Contributed by BJ and Jim Kingdon, 21-Dec-2021.) |
Ref | Expression |
---|---|
dfabsmax | ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = sup({𝐴, -𝐴}, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
2 | renegcl 8220 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
3 | maxcl 11221 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → sup({𝐴, -𝐴}, ℝ, < ) ∈ ℝ) | |
4 | 2, 3 | mpdan 421 | . . . 4 ⊢ (𝐴 ∈ ℝ → sup({𝐴, -𝐴}, ℝ, < ) ∈ ℝ) |
5 | maxle2 11223 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → -𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )) | |
6 | 2, 5 | mpdan 421 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )) |
7 | 1, 4, 6 | lenegcon1d 8486 | . . 3 ⊢ (𝐴 ∈ ℝ → -sup({𝐴, -𝐴}, ℝ, < ) ≤ 𝐴) |
8 | maxle1 11222 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → 𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )) | |
9 | 2, 8 | mpdan 421 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )) |
10 | absle 11100 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ sup({𝐴, -𝐴}, ℝ, < ) ∈ ℝ) → ((abs‘𝐴) ≤ sup({𝐴, -𝐴}, ℝ, < ) ↔ (-sup({𝐴, -𝐴}, ℝ, < ) ≤ 𝐴 ∧ 𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )))) | |
11 | 4, 10 | mpdan 421 | . . 3 ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴) ≤ sup({𝐴, -𝐴}, ℝ, < ) ↔ (-sup({𝐴, -𝐴}, ℝ, < ) ≤ 𝐴 ∧ 𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )))) |
12 | 7, 9, 11 | mpbir2and 944 | . 2 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) ≤ sup({𝐴, -𝐴}, ℝ, < )) |
13 | recn 7946 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
14 | 13 | abscld 11192 | . . 3 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ) |
15 | leabs 11085 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) | |
16 | 2 | leabsd 11172 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝐴 ≤ (abs‘-𝐴)) |
17 | 13 | absnegd 11200 | . . . 4 ⊢ (𝐴 ∈ ℝ → (abs‘-𝐴) = (abs‘𝐴)) |
18 | 16, 17 | breqtrd 4031 | . . 3 ⊢ (𝐴 ∈ ℝ → -𝐴 ≤ (abs‘𝐴)) |
19 | maxleast 11224 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) ∧ (𝐴 ≤ (abs‘𝐴) ∧ -𝐴 ≤ (abs‘𝐴))) → sup({𝐴, -𝐴}, ℝ, < ) ≤ (abs‘𝐴)) | |
20 | 1, 2, 14, 15, 18, 19 | syl32anc 1246 | . 2 ⊢ (𝐴 ∈ ℝ → sup({𝐴, -𝐴}, ℝ, < ) ≤ (abs‘𝐴)) |
21 | 14, 4 | letri3d 8075 | . 2 ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴) = sup({𝐴, -𝐴}, ℝ, < ) ↔ ((abs‘𝐴) ≤ sup({𝐴, -𝐴}, ℝ, < ) ∧ sup({𝐴, -𝐴}, ℝ, < ) ≤ (abs‘𝐴)))) |
22 | 12, 20, 21 | mpbir2and 944 | 1 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = sup({𝐴, -𝐴}, ℝ, < )) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 {cpr 3595 class class class wbr 4005 ‘cfv 5218 supcsup 6983 ℝcr 7812 < clt 7994 ≤ cle 7995 -cneg 8131 abscabs 11008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 ax-caucvg 7933 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-frec 6394 df-sup 6985 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-n0 9179 df-z 9256 df-uz 9531 df-rp 9656 df-seqfrec 10448 df-exp 10522 df-cj 10853 df-re 10854 df-im 10855 df-rsqrt 11009 df-abs 11010 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |