ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcnvre GIF version

Theorem expcnvre 11687
Description: A sequence of powers of a nonnegative real number less than one converges to zero. (Contributed by Jim Kingdon, 28-Oct-2022.)
Hypotheses
Ref Expression
expcnvre.ar (𝜑𝐴 ∈ ℝ)
expcnvre.a1 (𝜑𝐴 < 1)
expcnvre.a0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
expcnvre (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem expcnvre
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expcnvre.ar . . 3 (𝜑𝐴 ∈ ℝ)
2 1red 8060 . . 3 (𝜑 → 1 ∈ ℝ)
3 expcnvre.a1 . . 3 (𝜑𝐴 < 1)
4 qbtwnre 10365 . . 3 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 < 1) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 1))
51, 2, 3, 4syl3anc 1249 . 2 (𝜑 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 1))
6 nn0uz 9655 . . 3 0 = (ℤ‘0)
7 0zd 9357 . . 3 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 ∈ ℤ)
8 qre 9718 . . . . . 6 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
98ad2antrl 490 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝑥 ∈ ℝ)
109recnd 8074 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝑥 ∈ ℂ)
11 0red 8046 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 ∈ ℝ)
121adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝐴 ∈ ℝ)
13 expcnvre.a0 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐴)
1413adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 ≤ 𝐴)
15 simprrl 539 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝐴 < 𝑥)
1611, 12, 9, 14, 15lelttrd 8170 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 < 𝑥)
1711, 9, 16ltled 8164 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 ≤ 𝑥)
189, 17absidd 11351 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (abs‘𝑥) = 𝑥)
19 simprrr 540 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝑥 < 1)
2018, 19eqbrtrd 4056 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (abs‘𝑥) < 1)
219, 16gt0ap0d 8675 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝑥 # 0)
2210, 20, 21expcnvap0 11686 . . 3 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (𝑛 ∈ ℕ0 ↦ (𝑥𝑛)) ⇝ 0)
23 nn0ex 9274 . . . . 5 0 ∈ V
2423mptex 5791 . . . 4 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V
2524a1i 9 . . 3 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V)
26 simpr 110 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
279adantr 276 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝑥 ∈ ℝ)
2827, 26reexpcld 10801 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℝ)
29 oveq2 5933 . . . . . 6 (𝑛 = 𝑘 → (𝑥𝑛) = (𝑥𝑘))
30 eqid 2196 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝑥𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝑥𝑛))
3129, 30fvmptg 5640 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝑥𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ (𝑥𝑛))‘𝑘) = (𝑥𝑘))
3226, 28, 31syl2anc 411 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝑥𝑛))‘𝑘) = (𝑥𝑘))
3332, 28eqeltrd 2273 . . 3 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝑥𝑛))‘𝑘) ∈ ℝ)
3412adantr 276 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
3534, 26reexpcld 10801 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
36 oveq2 5933 . . . . . 6 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
37 eqid 2196 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
3836, 37fvmptg 5640 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
3926, 35, 38syl2anc 411 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
4039, 35eqeltrd 2273 . . 3 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ∈ ℝ)
4114adantr 276 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 0 ≤ 𝐴)
4215adantr 276 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝐴 < 𝑥)
4334, 27, 42ltled 8164 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝐴𝑥)
44 leexp1a 10705 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴𝑥)) → (𝐴𝑘) ≤ (𝑥𝑘))
4534, 27, 26, 41, 43, 44syl32anc 1257 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ≤ (𝑥𝑘))
4645, 39, 323brtr4d 4066 . . 3 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ0 ↦ (𝑥𝑛))‘𝑘))
4734, 26, 41expge0d 10802 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 0 ≤ (𝐴𝑘))
4847, 39breqtrrd 4062 . . 3 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 0 ≤ ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘))
496, 7, 22, 25, 33, 40, 46, 48climsqz2 11520 . 2 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
505, 49rexlimddv 2619 1 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wrex 2476  Vcvv 2763   class class class wbr 4034  cmpt 4095  cfv 5259  (class class class)co 5925  cr 7897  0cc0 7898  1c1 7899   < clt 8080  cle 8081  0cn0 9268  cq 9712  cexp 10649  abscabs 11181  cli 11462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463
This theorem is referenced by:  expcnv  11688
  Copyright terms: Public domain W3C validator