ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcnvre GIF version

Theorem expcnvre 11511
Description: A sequence of powers of a nonnegative real number less than one converges to zero. (Contributed by Jim Kingdon, 28-Oct-2022.)
Hypotheses
Ref Expression
expcnvre.ar (𝜑𝐴 ∈ ℝ)
expcnvre.a1 (𝜑𝐴 < 1)
expcnvre.a0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
expcnvre (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem expcnvre
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expcnvre.ar . . 3 (𝜑𝐴 ∈ ℝ)
2 1red 7972 . . 3 (𝜑 → 1 ∈ ℝ)
3 expcnvre.a1 . . 3 (𝜑𝐴 < 1)
4 qbtwnre 10257 . . 3 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 < 1) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 1))
51, 2, 3, 4syl3anc 1238 . 2 (𝜑 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 1))
6 nn0uz 9562 . . 3 0 = (ℤ‘0)
7 0zd 9265 . . 3 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 ∈ ℤ)
8 qre 9625 . . . . . 6 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
98ad2antrl 490 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝑥 ∈ ℝ)
109recnd 7986 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝑥 ∈ ℂ)
11 0red 7958 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 ∈ ℝ)
121adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝐴 ∈ ℝ)
13 expcnvre.a0 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐴)
1413adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 ≤ 𝐴)
15 simprrl 539 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝐴 < 𝑥)
1611, 12, 9, 14, 15lelttrd 8082 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 < 𝑥)
1711, 9, 16ltled 8076 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 ≤ 𝑥)
189, 17absidd 11176 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (abs‘𝑥) = 𝑥)
19 simprrr 540 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝑥 < 1)
2018, 19eqbrtrd 4026 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (abs‘𝑥) < 1)
219, 16gt0ap0d 8586 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝑥 # 0)
2210, 20, 21expcnvap0 11510 . . 3 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (𝑛 ∈ ℕ0 ↦ (𝑥𝑛)) ⇝ 0)
23 nn0ex 9182 . . . . 5 0 ∈ V
2423mptex 5743 . . . 4 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V
2524a1i 9 . . 3 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V)
26 simpr 110 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
279adantr 276 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝑥 ∈ ℝ)
2827, 26reexpcld 10671 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℝ)
29 oveq2 5883 . . . . . 6 (𝑛 = 𝑘 → (𝑥𝑛) = (𝑥𝑘))
30 eqid 2177 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝑥𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝑥𝑛))
3129, 30fvmptg 5593 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝑥𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ (𝑥𝑛))‘𝑘) = (𝑥𝑘))
3226, 28, 31syl2anc 411 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝑥𝑛))‘𝑘) = (𝑥𝑘))
3332, 28eqeltrd 2254 . . 3 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝑥𝑛))‘𝑘) ∈ ℝ)
3412adantr 276 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
3534, 26reexpcld 10671 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
36 oveq2 5883 . . . . . 6 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
37 eqid 2177 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
3836, 37fvmptg 5593 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
3926, 35, 38syl2anc 411 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
4039, 35eqeltrd 2254 . . 3 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ∈ ℝ)
4114adantr 276 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 0 ≤ 𝐴)
4215adantr 276 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝐴 < 𝑥)
4334, 27, 42ltled 8076 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝐴𝑥)
44 leexp1a 10575 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴𝑥)) → (𝐴𝑘) ≤ (𝑥𝑘))
4534, 27, 26, 41, 43, 44syl32anc 1246 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ≤ (𝑥𝑘))
4645, 39, 323brtr4d 4036 . . 3 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ0 ↦ (𝑥𝑛))‘𝑘))
4734, 26, 41expge0d 10672 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 0 ≤ (𝐴𝑘))
4847, 39breqtrrd 4032 . . 3 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 0 ≤ ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘))
496, 7, 22, 25, 33, 40, 46, 48climsqz2 11344 . 2 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
505, 49rexlimddv 2599 1 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wrex 2456  Vcvv 2738   class class class wbr 4004  cmpt 4065  cfv 5217  (class class class)co 5875  cr 7810  0cc0 7811  1c1 7812   < clt 7992  cle 7993  0cn0 9176  cq 9619  cexp 10519  abscabs 11006  cli 11286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-seqfrec 10446  df-exp 10520  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287
This theorem is referenced by:  expcnv  11512
  Copyright terms: Public domain W3C validator