Step | Hyp | Ref
| Expression |
1 | | expcnvre.ar |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | | 1red 7935 |
. . 3
⊢ (𝜑 → 1 ∈
ℝ) |
3 | | expcnvre.a1 |
. . 3
⊢ (𝜑 → 𝐴 < 1) |
4 | | qbtwnre 10213 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 1 ∈
ℝ ∧ 𝐴 < 1)
→ ∃𝑥 ∈
ℚ (𝐴 < 𝑥 ∧ 𝑥 < 1)) |
5 | 1, 2, 3, 4 | syl3anc 1233 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 1)) |
6 | | nn0uz 9521 |
. . 3
⊢
ℕ0 = (ℤ≥‘0) |
7 | | 0zd 9224 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → 0 ∈
ℤ) |
8 | | qre 9584 |
. . . . . 6
⊢ (𝑥 ∈ ℚ → 𝑥 ∈
ℝ) |
9 | 8 | ad2antrl 487 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → 𝑥 ∈ ℝ) |
10 | 9 | recnd 7948 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → 𝑥 ∈ ℂ) |
11 | | 0red 7921 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → 0 ∈
ℝ) |
12 | 1 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → 𝐴 ∈ ℝ) |
13 | | expcnvre.a0 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ 𝐴) |
14 | 13 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → 0 ≤ 𝐴) |
15 | | simprrl 534 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → 𝐴 < 𝑥) |
16 | 11, 12, 9, 14, 15 | lelttrd 8044 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → 0 < 𝑥) |
17 | 11, 9, 16 | ltled 8038 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → 0 ≤ 𝑥) |
18 | 9, 17 | absidd 11131 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → (abs‘𝑥) = 𝑥) |
19 | | simprrr 535 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → 𝑥 < 1) |
20 | 18, 19 | eqbrtrd 4011 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → (abs‘𝑥) < 1) |
21 | 9, 16 | gt0ap0d 8548 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → 𝑥 # 0) |
22 | 10, 20, 21 | expcnvap0 11465 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → (𝑛 ∈ ℕ0 ↦ (𝑥↑𝑛)) ⇝ 0) |
23 | | nn0ex 9141 |
. . . . 5
⊢
ℕ0 ∈ V |
24 | 23 | mptex 5722 |
. . . 4
⊢ (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛)) ∈ V |
25 | 24 | a1i 9 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ∈ V) |
26 | | simpr 109 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
27 | 9 | adantr 274 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝑥 ∈
ℝ) |
28 | 27, 26 | reexpcld 10626 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → (𝑥↑𝑘) ∈ ℝ) |
29 | | oveq2 5861 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (𝑥↑𝑛) = (𝑥↑𝑘)) |
30 | | eqid 2170 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
↦ (𝑥↑𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝑥↑𝑛)) |
31 | 29, 30 | fvmptg 5572 |
. . . . 5
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥↑𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0
↦ (𝑥↑𝑛))‘𝑘) = (𝑥↑𝑘)) |
32 | 26, 28, 31 | syl2anc 409 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝑥↑𝑛))‘𝑘) = (𝑥↑𝑘)) |
33 | 32, 28 | eqeltrd 2247 |
. . 3
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝑥↑𝑛))‘𝑘) ∈ ℝ) |
34 | 12 | adantr 274 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈
ℝ) |
35 | 34, 26 | reexpcld 10626 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℝ) |
36 | | oveq2 5861 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (𝐴↑𝑛) = (𝐴↑𝑘)) |
37 | | eqid 2170 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) |
38 | 36, 37 | fvmptg 5572 |
. . . . 5
⊢ ((𝑘 ∈ ℕ0
∧ (𝐴↑𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
39 | 26, 35, 38 | syl2anc 409 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
40 | 39, 35 | eqeltrd 2247 |
. . 3
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑘) ∈ ℝ) |
41 | 14 | adantr 274 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 0 ≤
𝐴) |
42 | 15 | adantr 274 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝐴 < 𝑥) |
43 | 34, 27, 42 | ltled 8038 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝐴 ≤ 𝑥) |
44 | | leexp1a 10531 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ0)
∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝑥)) → (𝐴↑𝑘) ≤ (𝑥↑𝑘)) |
45 | 34, 27, 26, 41, 43, 44 | syl32anc 1241 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ≤ (𝑥↑𝑘)) |
46 | 45, 39, 32 | 3brtr4d 4021 |
. . 3
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ0 ↦ (𝑥↑𝑛))‘𝑘)) |
47 | 34, 26, 41 | expge0d 10627 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 0 ≤
(𝐴↑𝑘)) |
48 | 47, 39 | breqtrrd 4017 |
. . 3
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 0 ≤
((𝑛 ∈
ℕ0 ↦ (𝐴↑𝑛))‘𝑘)) |
49 | 6, 7, 22, 25, 33, 40, 46, 48 | climsqz2 11299 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |
50 | 5, 49 | rexlimddv 2592 |
1
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |