ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcnvre GIF version

Theorem expcnvre 11858
Description: A sequence of powers of a nonnegative real number less than one converges to zero. (Contributed by Jim Kingdon, 28-Oct-2022.)
Hypotheses
Ref Expression
expcnvre.ar (𝜑𝐴 ∈ ℝ)
expcnvre.a1 (𝜑𝐴 < 1)
expcnvre.a0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
expcnvre (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem expcnvre
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expcnvre.ar . . 3 (𝜑𝐴 ∈ ℝ)
2 1red 8094 . . 3 (𝜑 → 1 ∈ ℝ)
3 expcnvre.a1 . . 3 (𝜑𝐴 < 1)
4 qbtwnre 10406 . . 3 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 < 1) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 1))
51, 2, 3, 4syl3anc 1250 . 2 (𝜑 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 1))
6 nn0uz 9690 . . 3 0 = (ℤ‘0)
7 0zd 9391 . . 3 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 ∈ ℤ)
8 qre 9753 . . . . . 6 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
98ad2antrl 490 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝑥 ∈ ℝ)
109recnd 8108 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝑥 ∈ ℂ)
11 0red 8080 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 ∈ ℝ)
121adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝐴 ∈ ℝ)
13 expcnvre.a0 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐴)
1413adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 ≤ 𝐴)
15 simprrl 539 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝐴 < 𝑥)
1611, 12, 9, 14, 15lelttrd 8204 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 < 𝑥)
1711, 9, 16ltled 8198 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 ≤ 𝑥)
189, 17absidd 11522 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (abs‘𝑥) = 𝑥)
19 simprrr 540 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝑥 < 1)
2018, 19eqbrtrd 4069 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (abs‘𝑥) < 1)
219, 16gt0ap0d 8709 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝑥 # 0)
2210, 20, 21expcnvap0 11857 . . 3 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (𝑛 ∈ ℕ0 ↦ (𝑥𝑛)) ⇝ 0)
23 nn0ex 9308 . . . . 5 0 ∈ V
2423mptex 5817 . . . 4 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V
2524a1i 9 . . 3 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V)
26 simpr 110 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
279adantr 276 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝑥 ∈ ℝ)
2827, 26reexpcld 10842 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℝ)
29 oveq2 5959 . . . . . 6 (𝑛 = 𝑘 → (𝑥𝑛) = (𝑥𝑘))
30 eqid 2206 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝑥𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝑥𝑛))
3129, 30fvmptg 5662 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝑥𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ (𝑥𝑛))‘𝑘) = (𝑥𝑘))
3226, 28, 31syl2anc 411 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝑥𝑛))‘𝑘) = (𝑥𝑘))
3332, 28eqeltrd 2283 . . 3 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝑥𝑛))‘𝑘) ∈ ℝ)
3412adantr 276 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
3534, 26reexpcld 10842 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
36 oveq2 5959 . . . . . 6 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
37 eqid 2206 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
3836, 37fvmptg 5662 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
3926, 35, 38syl2anc 411 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
4039, 35eqeltrd 2283 . . 3 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ∈ ℝ)
4114adantr 276 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 0 ≤ 𝐴)
4215adantr 276 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝐴 < 𝑥)
4334, 27, 42ltled 8198 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝐴𝑥)
44 leexp1a 10746 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴𝑥)) → (𝐴𝑘) ≤ (𝑥𝑘))
4534, 27, 26, 41, 43, 44syl32anc 1258 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ≤ (𝑥𝑘))
4645, 39, 323brtr4d 4079 . . 3 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ0 ↦ (𝑥𝑛))‘𝑘))
4734, 26, 41expge0d 10843 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 0 ≤ (𝐴𝑘))
4847, 39breqtrrd 4075 . . 3 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 0 ≤ ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘))
496, 7, 22, 25, 33, 40, 46, 48climsqz2 11691 . 2 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
505, 49rexlimddv 2629 1 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wrex 2486  Vcvv 2773   class class class wbr 4047  cmpt 4109  cfv 5276  (class class class)co 5951  cr 7931  0cc0 7932  1c1 7933   < clt 8114  cle 8115  0cn0 9302  cq 9747  cexp 10690  abscabs 11352  cli 11633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634
This theorem is referenced by:  expcnv  11859
  Copyright terms: Public domain W3C validator