| Step | Hyp | Ref
 | Expression | 
| 1 |   | expcnvre.ar | 
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 2 |   | 1red 8041 | 
. . 3
⊢ (𝜑 → 1 ∈
ℝ) | 
| 3 |   | expcnvre.a1 | 
. . 3
⊢ (𝜑 → 𝐴 < 1) | 
| 4 |   | qbtwnre 10346 | 
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 1 ∈
ℝ ∧ 𝐴 < 1)
→ ∃𝑥 ∈
ℚ (𝐴 < 𝑥 ∧ 𝑥 < 1)) | 
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 1)) | 
| 6 |   | nn0uz 9636 | 
. . 3
⊢
ℕ0 = (ℤ≥‘0) | 
| 7 |   | 0zd 9338 | 
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → 0 ∈
ℤ) | 
| 8 |   | qre 9699 | 
. . . . . 6
⊢ (𝑥 ∈ ℚ → 𝑥 ∈
ℝ) | 
| 9 | 8 | ad2antrl 490 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → 𝑥 ∈ ℝ) | 
| 10 | 9 | recnd 8055 | 
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → 𝑥 ∈ ℂ) | 
| 11 |   | 0red 8027 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → 0 ∈
ℝ) | 
| 12 | 1 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → 𝐴 ∈ ℝ) | 
| 13 |   | expcnvre.a0 | 
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ 𝐴) | 
| 14 | 13 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → 0 ≤ 𝐴) | 
| 15 |   | simprrl 539 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → 𝐴 < 𝑥) | 
| 16 | 11, 12, 9, 14, 15 | lelttrd 8151 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → 0 < 𝑥) | 
| 17 | 11, 9, 16 | ltled 8145 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → 0 ≤ 𝑥) | 
| 18 | 9, 17 | absidd 11332 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → (abs‘𝑥) = 𝑥) | 
| 19 |   | simprrr 540 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → 𝑥 < 1) | 
| 20 | 18, 19 | eqbrtrd 4055 | 
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → (abs‘𝑥) < 1) | 
| 21 | 9, 16 | gt0ap0d 8656 | 
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → 𝑥 # 0) | 
| 22 | 10, 20, 21 | expcnvap0 11667 | 
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → (𝑛 ∈ ℕ0 ↦ (𝑥↑𝑛)) ⇝ 0) | 
| 23 |   | nn0ex 9255 | 
. . . . 5
⊢
ℕ0 ∈ V | 
| 24 | 23 | mptex 5788 | 
. . . 4
⊢ (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛)) ∈ V | 
| 25 | 24 | a1i 9 | 
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ∈ V) | 
| 26 |   | simpr 110 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) | 
| 27 | 9 | adantr 276 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝑥 ∈
ℝ) | 
| 28 | 27, 26 | reexpcld 10782 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → (𝑥↑𝑘) ∈ ℝ) | 
| 29 |   | oveq2 5930 | 
. . . . . 6
⊢ (𝑛 = 𝑘 → (𝑥↑𝑛) = (𝑥↑𝑘)) | 
| 30 |   | eqid 2196 | 
. . . . . 6
⊢ (𝑛 ∈ ℕ0
↦ (𝑥↑𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝑥↑𝑛)) | 
| 31 | 29, 30 | fvmptg 5637 | 
. . . . 5
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥↑𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0
↦ (𝑥↑𝑛))‘𝑘) = (𝑥↑𝑘)) | 
| 32 | 26, 28, 31 | syl2anc 411 | 
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝑥↑𝑛))‘𝑘) = (𝑥↑𝑘)) | 
| 33 | 32, 28 | eqeltrd 2273 | 
. . 3
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝑥↑𝑛))‘𝑘) ∈ ℝ) | 
| 34 | 12 | adantr 276 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈
ℝ) | 
| 35 | 34, 26 | reexpcld 10782 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℝ) | 
| 36 |   | oveq2 5930 | 
. . . . . 6
⊢ (𝑛 = 𝑘 → (𝐴↑𝑛) = (𝐴↑𝑘)) | 
| 37 |   | eqid 2196 | 
. . . . . 6
⊢ (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) | 
| 38 | 36, 37 | fvmptg 5637 | 
. . . . 5
⊢ ((𝑘 ∈ ℕ0
∧ (𝐴↑𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) | 
| 39 | 26, 35, 38 | syl2anc 411 | 
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) | 
| 40 | 39, 35 | eqeltrd 2273 | 
. . 3
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑘) ∈ ℝ) | 
| 41 | 14 | adantr 276 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 0 ≤
𝐴) | 
| 42 | 15 | adantr 276 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝐴 < 𝑥) | 
| 43 | 34, 27, 42 | ltled 8145 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝐴 ≤ 𝑥) | 
| 44 |   | leexp1a 10686 | 
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ0)
∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝑥)) → (𝐴↑𝑘) ≤ (𝑥↑𝑘)) | 
| 45 | 34, 27, 26, 41, 43, 44 | syl32anc 1257 | 
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ≤ (𝑥↑𝑘)) | 
| 46 | 45, 39, 32 | 3brtr4d 4065 | 
. . 3
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ0 ↦ (𝑥↑𝑛))‘𝑘)) | 
| 47 | 34, 26, 41 | expge0d 10783 | 
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 0 ≤
(𝐴↑𝑘)) | 
| 48 | 47, 39 | breqtrrd 4061 | 
. . 3
⊢ (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 0 ≤
((𝑛 ∈
ℕ0 ↦ (𝐴↑𝑛))‘𝑘)) | 
| 49 | 6, 7, 22, 25, 33, 40, 46, 48 | climsqz2 11501 | 
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 1))) → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) | 
| 50 | 5, 49 | rexlimddv 2619 | 
1
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |