ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcnvre GIF version

Theorem expcnvre 11980
Description: A sequence of powers of a nonnegative real number less than one converges to zero. (Contributed by Jim Kingdon, 28-Oct-2022.)
Hypotheses
Ref Expression
expcnvre.ar (𝜑𝐴 ∈ ℝ)
expcnvre.a1 (𝜑𝐴 < 1)
expcnvre.a0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
expcnvre (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem expcnvre
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expcnvre.ar . . 3 (𝜑𝐴 ∈ ℝ)
2 1red 8129 . . 3 (𝜑 → 1 ∈ ℝ)
3 expcnvre.a1 . . 3 (𝜑𝐴 < 1)
4 qbtwnre 10443 . . 3 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 < 1) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 1))
51, 2, 3, 4syl3anc 1252 . 2 (𝜑 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 1))
6 nn0uz 9725 . . 3 0 = (ℤ‘0)
7 0zd 9426 . . 3 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 ∈ ℤ)
8 qre 9788 . . . . . 6 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
98ad2antrl 490 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝑥 ∈ ℝ)
109recnd 8143 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝑥 ∈ ℂ)
11 0red 8115 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 ∈ ℝ)
121adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝐴 ∈ ℝ)
13 expcnvre.a0 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐴)
1413adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 ≤ 𝐴)
15 simprrl 539 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝐴 < 𝑥)
1611, 12, 9, 14, 15lelttrd 8239 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 < 𝑥)
1711, 9, 16ltled 8233 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 ≤ 𝑥)
189, 17absidd 11644 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (abs‘𝑥) = 𝑥)
19 simprrr 540 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝑥 < 1)
2018, 19eqbrtrd 4084 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (abs‘𝑥) < 1)
219, 16gt0ap0d 8744 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝑥 # 0)
2210, 20, 21expcnvap0 11979 . . 3 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (𝑛 ∈ ℕ0 ↦ (𝑥𝑛)) ⇝ 0)
23 nn0ex 9343 . . . . 5 0 ∈ V
2423mptex 5838 . . . 4 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V
2524a1i 9 . . 3 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V)
26 simpr 110 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
279adantr 276 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝑥 ∈ ℝ)
2827, 26reexpcld 10879 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℝ)
29 oveq2 5982 . . . . . 6 (𝑛 = 𝑘 → (𝑥𝑛) = (𝑥𝑘))
30 eqid 2209 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝑥𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝑥𝑛))
3129, 30fvmptg 5683 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝑥𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ (𝑥𝑛))‘𝑘) = (𝑥𝑘))
3226, 28, 31syl2anc 411 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝑥𝑛))‘𝑘) = (𝑥𝑘))
3332, 28eqeltrd 2286 . . 3 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝑥𝑛))‘𝑘) ∈ ℝ)
3412adantr 276 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
3534, 26reexpcld 10879 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
36 oveq2 5982 . . . . . 6 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
37 eqid 2209 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
3836, 37fvmptg 5683 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
3926, 35, 38syl2anc 411 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
4039, 35eqeltrd 2286 . . 3 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ∈ ℝ)
4114adantr 276 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 0 ≤ 𝐴)
4215adantr 276 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝐴 < 𝑥)
4334, 27, 42ltled 8233 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝐴𝑥)
44 leexp1a 10783 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴𝑥)) → (𝐴𝑘) ≤ (𝑥𝑘))
4534, 27, 26, 41, 43, 44syl32anc 1260 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ≤ (𝑥𝑘))
4645, 39, 323brtr4d 4094 . . 3 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ0 ↦ (𝑥𝑛))‘𝑘))
4734, 26, 41expge0d 10880 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 0 ≤ (𝐴𝑘))
4847, 39breqtrrd 4090 . . 3 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 0 ≤ ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘))
496, 7, 22, 25, 33, 40, 46, 48climsqz2 11813 . 2 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
505, 49rexlimddv 2633 1 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  wrex 2489  Vcvv 2779   class class class wbr 4062  cmpt 4124  cfv 5294  (class class class)co 5974  cr 7966  0cc0 7967  1c1 7968   < clt 8149  cle 8150  0cn0 9337  cq 9782  cexp 10727  abscabs 11474  cli 11755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756
This theorem is referenced by:  expcnv  11981
  Copyright terms: Public domain W3C validator