ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsmulgcd GIF version

Theorem dvdsmulgcd 12058
Description: Relationship between the order of an element and that of a multiple. (a divisibility equivalent). (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
dvdsmulgcd ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐵 · 𝐶) ↔ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))))

Proof of Theorem dvdsmulgcd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → 𝐶 ∈ ℤ)
2 dvdszrcl 11831 . . . . . 6 (𝐴 ∥ (𝐵 · 𝐶) → (𝐴 ∈ ℤ ∧ (𝐵 · 𝐶) ∈ ℤ))
32adantl 277 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → (𝐴 ∈ ℤ ∧ (𝐵 · 𝐶) ∈ ℤ))
43simpld 112 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → 𝐴 ∈ ℤ)
5 bezout 12044 . . . 4 ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)))
61, 4, 5syl2anc 411 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)))
74adantr 276 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∈ ℤ)
8 simplll 533 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐵 ∈ ℤ)
9 simpllr 534 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐶 ∈ ℤ)
10 simprl 529 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
119, 10zmulcld 9411 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐶 · 𝑥) ∈ ℤ)
128, 11zmulcld 9411 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · (𝐶 · 𝑥)) ∈ ℤ)
13 simprr 531 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
147, 13zmulcld 9411 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐴 · 𝑦) ∈ ℤ)
158, 14zmulcld 9411 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · (𝐴 · 𝑦)) ∈ ℤ)
16 simplr 528 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐵 · 𝐶))
178, 9zmulcld 9411 . . . . . . . . . 10 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · 𝐶) ∈ ℤ)
18 dvdsmultr1 11870 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐵 · 𝐶) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝐴 ∥ (𝐵 · 𝐶) → 𝐴 ∥ ((𝐵 · 𝐶) · 𝑥)))
197, 17, 10, 18syl3anc 1249 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐴 ∥ (𝐵 · 𝐶) → 𝐴 ∥ ((𝐵 · 𝐶) · 𝑥)))
2016, 19mpd 13 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ ((𝐵 · 𝐶) · 𝑥))
218zcnd 9406 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐵 ∈ ℂ)
229zcnd 9406 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐶 ∈ ℂ)
2310zcnd 9406 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℂ)
2421, 22, 23mulassd 8011 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐵 · 𝐶) · 𝑥) = (𝐵 · (𝐶 · 𝑥)))
2520, 24breqtrd 4044 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐵 · (𝐶 · 𝑥)))
268, 13zmulcld 9411 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · 𝑦) ∈ ℤ)
27 dvdsmul1 11852 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝐵 · 𝑦) ∈ ℤ) → 𝐴 ∥ (𝐴 · (𝐵 · 𝑦)))
287, 26, 27syl2anc 411 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐴 · (𝐵 · 𝑦)))
297zcnd 9406 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∈ ℂ)
3013zcnd 9406 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℂ)
3121, 29, 30mul12d 8139 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · (𝐴 · 𝑦)) = (𝐴 · (𝐵 · 𝑦)))
3228, 31breqtrrd 4046 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐵 · (𝐴 · 𝑦)))
33 dvds2add 11864 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝐵 · (𝐶 · 𝑥)) ∈ ℤ ∧ (𝐵 · (𝐴 · 𝑦)) ∈ ℤ) → ((𝐴 ∥ (𝐵 · (𝐶 · 𝑥)) ∧ 𝐴 ∥ (𝐵 · (𝐴 · 𝑦))) → 𝐴 ∥ ((𝐵 · (𝐶 · 𝑥)) + (𝐵 · (𝐴 · 𝑦)))))
3433imp 124 . . . . . . 7 (((𝐴 ∈ ℤ ∧ (𝐵 · (𝐶 · 𝑥)) ∈ ℤ ∧ (𝐵 · (𝐴 · 𝑦)) ∈ ℤ) ∧ (𝐴 ∥ (𝐵 · (𝐶 · 𝑥)) ∧ 𝐴 ∥ (𝐵 · (𝐴 · 𝑦)))) → 𝐴 ∥ ((𝐵 · (𝐶 · 𝑥)) + (𝐵 · (𝐴 · 𝑦))))
357, 12, 15, 25, 32, 34syl32anc 1257 . . . . . 6 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ ((𝐵 · (𝐶 · 𝑥)) + (𝐵 · (𝐴 · 𝑦))))
3611zcnd 9406 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐶 · 𝑥) ∈ ℂ)
3714zcnd 9406 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐴 · 𝑦) ∈ ℂ)
3821, 36, 37adddid 8012 . . . . . 6 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · ((𝐶 · 𝑥) + (𝐴 · 𝑦))) = ((𝐵 · (𝐶 · 𝑥)) + (𝐵 · (𝐴 · 𝑦))))
3935, 38breqtrrd 4046 . . . . 5 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐵 · ((𝐶 · 𝑥) + (𝐴 · 𝑦))))
40 oveq2 5904 . . . . . 6 ((𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)) → (𝐵 · (𝐶 gcd 𝐴)) = (𝐵 · ((𝐶 · 𝑥) + (𝐴 · 𝑦))))
4140breq2d 4030 . . . . 5 ((𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)) → (𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)) ↔ 𝐴 ∥ (𝐵 · ((𝐶 · 𝑥) + (𝐴 · 𝑦)))))
4239, 41syl5ibrcom 157 . . . 4 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)) → 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))))
4342rexlimdvva 2615 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)) → 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))))
446, 43mpd 13 . 2 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)))
45 dvdszrcl 11831 . . . . 5 (𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)) → (𝐴 ∈ ℤ ∧ (𝐵 · (𝐶 gcd 𝐴)) ∈ ℤ))
4645adantl 277 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐴 ∈ ℤ ∧ (𝐵 · (𝐶 gcd 𝐴)) ∈ ℤ))
4746simpld 112 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐴 ∈ ℤ)
4846simprd 114 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐵 · (𝐶 gcd 𝐴)) ∈ ℤ)
49 zmulcl 9336 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ)
5049adantr 276 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐵 · 𝐶) ∈ ℤ)
51 simpr 110 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)))
52 simplr 528 . . . . . 6 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐶 ∈ ℤ)
53 gcddvds 11996 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐶 gcd 𝐴) ∥ 𝐶 ∧ (𝐶 gcd 𝐴) ∥ 𝐴))
5452, 47, 53syl2anc 411 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → ((𝐶 gcd 𝐴) ∥ 𝐶 ∧ (𝐶 gcd 𝐴) ∥ 𝐴))
5554simpld 112 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐶 gcd 𝐴) ∥ 𝐶)
5652, 47gcdcld 12001 . . . . . 6 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐶 gcd 𝐴) ∈ ℕ0)
5756nn0zd 9403 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐶 gcd 𝐴) ∈ ℤ)
58 simpll 527 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐵 ∈ ℤ)
59 dvdscmul 11857 . . . . 5 (((𝐶 gcd 𝐴) ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐶 gcd 𝐴) ∥ 𝐶 → (𝐵 · (𝐶 gcd 𝐴)) ∥ (𝐵 · 𝐶)))
6057, 52, 58, 59syl3anc 1249 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → ((𝐶 gcd 𝐴) ∥ 𝐶 → (𝐵 · (𝐶 gcd 𝐴)) ∥ (𝐵 · 𝐶)))
6155, 60mpd 13 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐵 · (𝐶 gcd 𝐴)) ∥ (𝐵 · 𝐶))
62 dvdstr 11867 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐵 · (𝐶 gcd 𝐴)) ∈ ℤ ∧ (𝐵 · 𝐶) ∈ ℤ) → ((𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)) ∧ (𝐵 · (𝐶 gcd 𝐴)) ∥ (𝐵 · 𝐶)) → 𝐴 ∥ (𝐵 · 𝐶)))
6362imp 124 . . 3 (((𝐴 ∈ ℤ ∧ (𝐵 · (𝐶 gcd 𝐴)) ∈ ℤ ∧ (𝐵 · 𝐶) ∈ ℤ) ∧ (𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)) ∧ (𝐵 · (𝐶 gcd 𝐴)) ∥ (𝐵 · 𝐶))) → 𝐴 ∥ (𝐵 · 𝐶))
6447, 48, 50, 51, 61, 63syl32anc 1257 . 2 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐴 ∥ (𝐵 · 𝐶))
6544, 64impbida 596 1 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐵 · 𝐶) ↔ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160  wrex 2469   class class class wbr 4018  (class class class)co 5896   + caddc 7844   · cmul 7846  cz 9283  cdvds 11826   gcd cgcd 11975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960  ax-caucvg 7961
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-frec 6416  df-sup 7013  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-n0 9207  df-z 9284  df-uz 9559  df-q 9650  df-rp 9684  df-fz 10039  df-fzo 10173  df-fl 10301  df-mod 10354  df-seqfrec 10477  df-exp 10551  df-cj 10883  df-re 10884  df-im 10885  df-rsqrt 11039  df-abs 11040  df-dvds 11827  df-gcd 11976
This theorem is referenced by:  coprmdvds  12124
  Copyright terms: Public domain W3C validator