| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl31anc | GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 | ⊢ (𝜑 → 𝜓) |
| sylXanc.2 | ⊢ (𝜑 → 𝜒) |
| sylXanc.3 | ⊢ (𝜑 → 𝜃) |
| sylXanc.4 | ⊢ (𝜑 → 𝜏) |
| syl31anc.5 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl31anc | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | sylXanc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | 3jca 1179 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 5 | sylXanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl31anc.5 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
| 7 | 4, 5, 6 | syl2anc 411 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syl32anc 1257 stoic4b 1444 enq0tr 7520 ltmul12a 8906 lt2msq1 8931 ledivp1 8949 lemul1ad 8985 lemul2ad 8986 lediv2ad 9813 xaddge0 9972 difelfznle 10229 expubnd 10707 nn0leexp2 10821 expcanlem 10826 expcand 10828 xrmaxaddlem 11444 mertenslemi1 11719 eftlub 11874 dvdsadd 12020 3dvds 12048 divalgmod 12111 bitsfzolem 12138 bitsfzo 12139 bitsmod 12140 bitsinv1lem 12145 gcdzeq 12216 rplpwr 12221 sqgcd 12223 bezoutr 12226 rpmulgcd2 12290 rpdvds 12294 isprm5 12337 divgcdodd 12338 oddpwdclemxy 12364 divnumden 12391 crth 12419 phimullem 12420 coprimeprodsq2 12454 pythagtriplem19 12478 pclemub 12483 pcpre1 12488 pcidlem 12519 pockthlem 12552 prmunb 12558 kerf1ghm 13482 elrhmunit 13811 rrgnz 13902 znunit 14293 xblss2ps 14748 xblss2 14749 metcnpi3 14861 limcimolemlt 15008 limccnp2cntop 15021 dvmulxxbr 15046 dvcoapbr 15051 ltexp2d 15286 mpodvdsmulf1o 15334 lgsquad2lem2 15431 2lgsoddprmlem1 15454 2sqlem8a 15471 2sqlem8 15472 |
| Copyright terms: Public domain | W3C validator |