Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl31anc | GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | ⊢ (𝜑 → 𝜓) |
sylXanc.2 | ⊢ (𝜑 → 𝜒) |
sylXanc.3 | ⊢ (𝜑 → 𝜃) |
sylXanc.4 | ⊢ (𝜑 → 𝜏) |
syl31anc.5 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl31anc | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | sylXanc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | 3jca 1167 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
5 | sylXanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl31anc.5 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
7 | 4, 5, 6 | syl2anc 409 | 1 ⊢ (𝜑 → 𝜂) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: syl32anc 1236 stoic4b 1421 enq0tr 7375 ltmul12a 8755 lt2msq1 8780 ledivp1 8798 lemul1ad 8834 lemul2ad 8835 lediv2ad 9655 xaddge0 9814 difelfznle 10070 expubnd 10512 nn0leexp2 10624 expcanlem 10628 expcand 10630 xrmaxaddlem 11201 mertenslemi1 11476 eftlub 11631 dvdsadd 11776 divalgmod 11864 gcdzeq 11955 rplpwr 11960 sqgcd 11962 bezoutr 11965 rpmulgcd2 12027 rpdvds 12031 isprm5 12074 divgcdodd 12075 oddpwdclemxy 12101 divnumden 12128 crth 12156 phimullem 12157 coprimeprodsq2 12190 pythagtriplem19 12214 pclemub 12219 pcpre1 12224 pcidlem 12254 pockthlem 12286 prmunb 12292 xblss2ps 13044 xblss2 13045 metcnpi3 13157 limcimolemlt 13273 limccnp2cntop 13286 dvmulxxbr 13306 dvcoapbr 13311 2sqlem8a 13598 2sqlem8 13599 |
Copyright terms: Public domain | W3C validator |