![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl31anc | GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | ⊢ (𝜑 → 𝜓) |
sylXanc.2 | ⊢ (𝜑 → 𝜒) |
sylXanc.3 | ⊢ (𝜑 → 𝜃) |
sylXanc.4 | ⊢ (𝜑 → 𝜏) |
syl31anc.5 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl31anc | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | sylXanc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | 3jca 1179 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
5 | sylXanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl31anc.5 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
7 | 4, 5, 6 | syl2anc 411 | 1 ⊢ (𝜑 → 𝜂) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: syl32anc 1257 stoic4b 1444 enq0tr 7494 ltmul12a 8879 lt2msq1 8904 ledivp1 8922 lemul1ad 8958 lemul2ad 8959 lediv2ad 9785 xaddge0 9944 difelfznle 10201 expubnd 10667 nn0leexp2 10781 expcanlem 10786 expcand 10788 xrmaxaddlem 11403 mertenslemi1 11678 eftlub 11833 dvdsadd 11979 divalgmod 12068 gcdzeq 12159 rplpwr 12164 sqgcd 12166 bezoutr 12169 rpmulgcd2 12233 rpdvds 12237 isprm5 12280 divgcdodd 12281 oddpwdclemxy 12307 divnumden 12334 crth 12362 phimullem 12363 coprimeprodsq2 12396 pythagtriplem19 12420 pclemub 12425 pcpre1 12430 pcidlem 12461 pockthlem 12494 prmunb 12500 kerf1ghm 13344 elrhmunit 13673 rrgnz 13764 znunit 14147 xblss2ps 14572 xblss2 14573 metcnpi3 14685 limcimolemlt 14818 limccnp2cntop 14831 dvmulxxbr 14851 dvcoapbr 14856 2lgsoddprmlem1 15193 2sqlem8a 15209 2sqlem8 15210 |
Copyright terms: Public domain | W3C validator |