Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl31anc | GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | ⊢ (𝜑 → 𝜓) |
sylXanc.2 | ⊢ (𝜑 → 𝜒) |
sylXanc.3 | ⊢ (𝜑 → 𝜃) |
sylXanc.4 | ⊢ (𝜑 → 𝜏) |
syl31anc.5 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl31anc | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | sylXanc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | 3jca 1172 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
5 | sylXanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl31anc.5 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
7 | 4, 5, 6 | syl2anc 409 | 1 ⊢ (𝜑 → 𝜂) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: syl32anc 1241 stoic4b 1426 enq0tr 7396 ltmul12a 8776 lt2msq1 8801 ledivp1 8819 lemul1ad 8855 lemul2ad 8856 lediv2ad 9676 xaddge0 9835 difelfznle 10091 expubnd 10533 nn0leexp2 10645 expcanlem 10649 expcand 10651 xrmaxaddlem 11223 mertenslemi1 11498 eftlub 11653 dvdsadd 11798 divalgmod 11886 gcdzeq 11977 rplpwr 11982 sqgcd 11984 bezoutr 11987 rpmulgcd2 12049 rpdvds 12053 isprm5 12096 divgcdodd 12097 oddpwdclemxy 12123 divnumden 12150 crth 12178 phimullem 12179 coprimeprodsq2 12212 pythagtriplem19 12236 pclemub 12241 pcpre1 12246 pcidlem 12276 pockthlem 12308 prmunb 12314 xblss2ps 13198 xblss2 13199 metcnpi3 13311 limcimolemlt 13427 limccnp2cntop 13440 dvmulxxbr 13460 dvcoapbr 13465 2sqlem8a 13752 2sqlem8 13753 |
Copyright terms: Public domain | W3C validator |