| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl31anc | GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 | ⊢ (𝜑 → 𝜓) |
| sylXanc.2 | ⊢ (𝜑 → 𝜒) |
| sylXanc.3 | ⊢ (𝜑 → 𝜃) |
| sylXanc.4 | ⊢ (𝜑 → 𝜏) |
| syl31anc.5 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl31anc | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | sylXanc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | 3jca 1201 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 5 | sylXanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl31anc.5 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
| 7 | 4, 5, 6 | syl2anc 411 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: syl32anc 1279 stoic4b 1475 enq0tr 7629 ltmul12a 9015 lt2msq1 9040 ledivp1 9058 lemul1ad 9094 lemul2ad 9095 lediv2ad 9923 xaddge0 10082 difelfznle 10339 expubnd 10826 nn0leexp2 10940 expcanlem 10945 expcand 10947 swrds1 11208 ccatswrd 11210 pfxfv 11224 swrdccatin1 11265 pfxccatin12lem3 11272 xrmaxaddlem 11779 mertenslemi1 12054 eftlub 12209 dvdsadd 12355 3dvds 12383 divalgmod 12446 bitsfzolem 12473 bitsfzo 12474 bitsmod 12475 bitsinv1lem 12480 gcdzeq 12551 rplpwr 12556 sqgcd 12558 bezoutr 12561 rpmulgcd2 12625 rpdvds 12629 isprm5 12672 divgcdodd 12673 oddpwdclemxy 12699 divnumden 12726 crth 12754 phimullem 12755 coprimeprodsq2 12789 pythagtriplem19 12813 pclemub 12818 pcpre1 12823 pcidlem 12854 pockthlem 12887 prmunb 12893 kerf1ghm 13819 elrhmunit 14149 rrgnz 14240 znunit 14631 xblss2ps 15086 xblss2 15087 metcnpi3 15199 limcimolemlt 15346 limccnp2cntop 15359 dvmulxxbr 15384 dvcoapbr 15389 ltexp2d 15624 mpodvdsmulf1o 15672 lgsquad2lem2 15769 2lgsoddprmlem1 15792 2sqlem8a 15809 2sqlem8 15810 |
| Copyright terms: Public domain | W3C validator |