| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl31anc | GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 | ⊢ (𝜑 → 𝜓) |
| sylXanc.2 | ⊢ (𝜑 → 𝜒) |
| sylXanc.3 | ⊢ (𝜑 → 𝜃) |
| sylXanc.4 | ⊢ (𝜑 → 𝜏) |
| syl31anc.5 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl31anc | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | sylXanc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | 3jca 1182 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 5 | sylXanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl31anc.5 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
| 7 | 4, 5, 6 | syl2anc 411 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: syl32anc 1260 stoic4b 1455 enq0tr 7589 ltmul12a 8975 lt2msq1 9000 ledivp1 9018 lemul1ad 9054 lemul2ad 9055 lediv2ad 9883 xaddge0 10042 difelfznle 10299 expubnd 10785 nn0leexp2 10899 expcanlem 10904 expcand 10906 swrds1 11166 ccatswrd 11168 pfxfv 11182 swrdccatin1 11223 pfxccatin12lem3 11230 xrmaxaddlem 11737 mertenslemi1 12012 eftlub 12167 dvdsadd 12313 3dvds 12341 divalgmod 12404 bitsfzolem 12431 bitsfzo 12432 bitsmod 12433 bitsinv1lem 12438 gcdzeq 12509 rplpwr 12514 sqgcd 12516 bezoutr 12519 rpmulgcd2 12583 rpdvds 12587 isprm5 12630 divgcdodd 12631 oddpwdclemxy 12657 divnumden 12684 crth 12712 phimullem 12713 coprimeprodsq2 12747 pythagtriplem19 12771 pclemub 12776 pcpre1 12781 pcidlem 12812 pockthlem 12845 prmunb 12851 kerf1ghm 13777 elrhmunit 14106 rrgnz 14197 znunit 14588 xblss2ps 15043 xblss2 15044 metcnpi3 15156 limcimolemlt 15303 limccnp2cntop 15316 dvmulxxbr 15341 dvcoapbr 15346 ltexp2d 15581 mpodvdsmulf1o 15629 lgsquad2lem2 15726 2lgsoddprmlem1 15749 2sqlem8a 15766 2sqlem8 15767 |
| Copyright terms: Public domain | W3C validator |