| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl31anc | GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 | ⊢ (𝜑 → 𝜓) |
| sylXanc.2 | ⊢ (𝜑 → 𝜒) |
| sylXanc.3 | ⊢ (𝜑 → 𝜃) |
| sylXanc.4 | ⊢ (𝜑 → 𝜏) |
| syl31anc.5 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl31anc | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | sylXanc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | 3jca 1180 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 5 | sylXanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl31anc.5 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
| 7 | 4, 5, 6 | syl2anc 411 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: syl32anc 1258 stoic4b 1453 enq0tr 7554 ltmul12a 8940 lt2msq1 8965 ledivp1 8983 lemul1ad 9019 lemul2ad 9020 lediv2ad 9848 xaddge0 10007 difelfznle 10264 expubnd 10748 nn0leexp2 10862 expcanlem 10867 expcand 10869 swrds1 11129 ccatswrd 11131 pfxfv 11143 xrmaxaddlem 11615 mertenslemi1 11890 eftlub 12045 dvdsadd 12191 3dvds 12219 divalgmod 12282 bitsfzolem 12309 bitsfzo 12310 bitsmod 12311 bitsinv1lem 12316 gcdzeq 12387 rplpwr 12392 sqgcd 12394 bezoutr 12397 rpmulgcd2 12461 rpdvds 12465 isprm5 12508 divgcdodd 12509 oddpwdclemxy 12535 divnumden 12562 crth 12590 phimullem 12591 coprimeprodsq2 12625 pythagtriplem19 12649 pclemub 12654 pcpre1 12659 pcidlem 12690 pockthlem 12723 prmunb 12729 kerf1ghm 13654 elrhmunit 13983 rrgnz 14074 znunit 14465 xblss2ps 14920 xblss2 14921 metcnpi3 15033 limcimolemlt 15180 limccnp2cntop 15193 dvmulxxbr 15218 dvcoapbr 15223 ltexp2d 15458 mpodvdsmulf1o 15506 lgsquad2lem2 15603 2lgsoddprmlem1 15626 2sqlem8a 15643 2sqlem8 15644 |
| Copyright terms: Public domain | W3C validator |