ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ltexp2 GIF version

Theorem nn0ltexp2 10619
Description: Special case of ltexp2 13460 which we use here because we haven't yet defined df-rpcxp 13380 which is used in the current proof of ltexp2 13460. (Contributed by Jim Kingdon, 7-Oct-2024.)
Assertion
Ref Expression
nn0ltexp2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))

Proof of Theorem nn0ltexp2
Dummy variables 𝑘 𝑚 𝑝 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 1026 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝐴 ∈ ℝ)
2 simpll2 1027 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℕ0)
32nn0zd 9307 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℤ)
4 simpll3 1028 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℕ0)
54nn0zd 9307 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℤ)
6 simplr 520 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 1 < 𝐴)
7 simpr 109 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝑀 < 𝑁)
8 ltexp2a 10503 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴𝑀 < 𝑁)) → (𝐴𝑀) < (𝐴𝑁))
91, 3, 5, 6, 7, 8syl32anc 1236 . . 3 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → (𝐴𝑀) < (𝐴𝑁))
109ex 114 . 2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → (𝑀 < 𝑁 → (𝐴𝑀) < (𝐴𝑁)))
11 oveq2 5849 . . . . 5 (𝑚 = 𝑀 → (𝐴𝑚) = (𝐴𝑀))
1211breq1d 3991 . . . 4 (𝑚 = 𝑀 → ((𝐴𝑚) < (𝐴𝑁) ↔ (𝐴𝑀) < (𝐴𝑁)))
13 breq1 3984 . . . 4 (𝑚 = 𝑀 → (𝑚 < 𝑁𝑀 < 𝑁))
1412, 13imbi12d 233 . . 3 (𝑚 = 𝑀 → (((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁) ↔ ((𝐴𝑀) < (𝐴𝑁) → 𝑀 < 𝑁)))
15 simpl3 992 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → 𝑁 ∈ ℕ0)
16 simpl1 990 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
17 simpr 109 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → 1 < 𝐴)
18 oveq2 5849 . . . . . . . . . 10 (𝑤 = 0 → (𝐴𝑤) = (𝐴↑0))
1918breq2d 3993 . . . . . . . . 9 (𝑤 = 0 → ((𝐴𝑚) < (𝐴𝑤) ↔ (𝐴𝑚) < (𝐴↑0)))
20 breq2 3985 . . . . . . . . 9 (𝑤 = 0 → (𝑚 < 𝑤𝑚 < 0))
2119, 20imbi12d 233 . . . . . . . 8 (𝑤 = 0 → (((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ((𝐴𝑚) < (𝐴↑0) → 𝑚 < 0)))
2221ralbidv 2465 . . . . . . 7 (𝑤 = 0 → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑0) → 𝑚 < 0)))
2322imbi2d 229 . . . . . 6 (𝑤 = 0 → (((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤)) ↔ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑0) → 𝑚 < 0))))
24 oveq2 5849 . . . . . . . . . 10 (𝑤 = 𝑘 → (𝐴𝑤) = (𝐴𝑘))
2524breq2d 3993 . . . . . . . . 9 (𝑤 = 𝑘 → ((𝐴𝑚) < (𝐴𝑤) ↔ (𝐴𝑚) < (𝐴𝑘)))
26 breq2 3985 . . . . . . . . 9 (𝑤 = 𝑘 → (𝑚 < 𝑤𝑚 < 𝑘))
2725, 26imbi12d 233 . . . . . . . 8 (𝑤 = 𝑘 → (((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘)))
2827ralbidv 2465 . . . . . . 7 (𝑤 = 𝑘 → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘)))
2928imbi2d 229 . . . . . 6 (𝑤 = 𝑘 → (((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤)) ↔ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘))))
30 oveq2 5849 . . . . . . . . . 10 (𝑤 = (𝑘 + 1) → (𝐴𝑤) = (𝐴↑(𝑘 + 1)))
3130breq2d 3993 . . . . . . . . 9 (𝑤 = (𝑘 + 1) → ((𝐴𝑚) < (𝐴𝑤) ↔ (𝐴𝑚) < (𝐴↑(𝑘 + 1))))
32 breq2 3985 . . . . . . . . 9 (𝑤 = (𝑘 + 1) → (𝑚 < 𝑤𝑚 < (𝑘 + 1)))
3331, 32imbi12d 233 . . . . . . . 8 (𝑤 = (𝑘 + 1) → (((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1))))
3433ralbidv 2465 . . . . . . 7 (𝑤 = (𝑘 + 1) → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1))))
3534imbi2d 229 . . . . . 6 (𝑤 = (𝑘 + 1) → (((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤)) ↔ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1)))))
36 oveq2 5849 . . . . . . . . . 10 (𝑤 = 𝑁 → (𝐴𝑤) = (𝐴𝑁))
3736breq2d 3993 . . . . . . . . 9 (𝑤 = 𝑁 → ((𝐴𝑚) < (𝐴𝑤) ↔ (𝐴𝑚) < (𝐴𝑁)))
38 breq2 3985 . . . . . . . . 9 (𝑤 = 𝑁 → (𝑚 < 𝑤𝑚 < 𝑁))
3937, 38imbi12d 233 . . . . . . . 8 (𝑤 = 𝑁 → (((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁)))
4039ralbidv 2465 . . . . . . 7 (𝑤 = 𝑁 → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁)))
4140imbi2d 229 . . . . . 6 (𝑤 = 𝑁 → (((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤)) ↔ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁))))
42 recn 7882 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4342ad2antrr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 𝐴 ∈ ℂ)
4443exp0d 10578 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → (𝐴↑0) = 1)
45 1re 7894 . . . . . . . . . 10 1 ∈ ℝ
4644, 45eqeltrdi 2256 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → (𝐴↑0) ∈ ℝ)
47 simpll 519 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 𝐴 ∈ ℝ)
48 simpr 109 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
4947, 48reexpcld 10601 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → (𝐴𝑚) ∈ ℝ)
50 1red 7910 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℝ)
51 simplr 520 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 1 < 𝐴)
5250, 47, 51ltled 8013 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 1 ≤ 𝐴)
5347, 48, 52expge1d 10603 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 1 ≤ (𝐴𝑚))
5444, 53eqbrtrd 4003 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → (𝐴↑0) ≤ (𝐴𝑚))
5546, 49, 54lensymd 8016 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → ¬ (𝐴𝑚) < (𝐴↑0))
5655pm2.21d 609 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → ((𝐴𝑚) < (𝐴↑0) → 𝑚 < 0))
5756ralrimiva 2538 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑0) → 𝑚 < 0))
58 oveq2 5849 . . . . . . . . . . . 12 (𝑝 = 𝑚 → (𝐴𝑝) = (𝐴𝑚))
5958breq1d 3991 . . . . . . . . . . 11 (𝑝 = 𝑚 → ((𝐴𝑝) < (𝐴𝑘) ↔ (𝐴𝑚) < (𝐴𝑘)))
60 breq1 3984 . . . . . . . . . . 11 (𝑝 = 𝑚 → (𝑝 < 𝑘𝑚 < 𝑘))
6159, 60imbi12d 233 . . . . . . . . . 10 (𝑝 = 𝑚 → (((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘) ↔ ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘)))
6261cbvralv 2691 . . . . . . . . 9 (∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘) ↔ ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘))
63 simplr 520 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴𝑚) < (𝐴↑(𝑘 + 1)))
64 simprl 521 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 𝐴 ∈ ℝ)
6564ad4antr 486 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ ℝ)
6665recnd 7923 . . . . . . . . . . . . . . . . . . 19 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ ℂ)
67 simpr 109 . . . . . . . . . . . . . . . . . . 19 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
68 expm1t 10479 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ) → (𝐴𝑚) = ((𝐴↑(𝑚 − 1)) · 𝐴))
6966, 67, 68syl2anc 409 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴𝑚) = ((𝐴↑(𝑚 − 1)) · 𝐴))
70 simp-5l 533 . . . . . . . . . . . . . . . . . . 19 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ ℕ0)
7166, 70expp1d 10585 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
7263, 69, 713brtr3d 4012 . . . . . . . . . . . . . . . . 17 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → ((𝐴↑(𝑚 − 1)) · 𝐴) < ((𝐴𝑘) · 𝐴))
73 nnm1nn0 9151 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → (𝑚 − 1) ∈ ℕ0)
7473adantl 275 . . . . . . . . . . . . . . . . . . 19 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝑚 − 1) ∈ ℕ0)
7565, 74reexpcld 10601 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴↑(𝑚 − 1)) ∈ ℝ)
7665, 70reexpcld 10601 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴𝑘) ∈ ℝ)
77 0red 7896 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 0 ∈ ℝ)
78 1red 7910 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 1 ∈ ℝ)
79 0lt1 8021 . . . . . . . . . . . . . . . . . . . . . 22 0 < 1
8079a1i 9 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 0 < 1)
81 simprr 522 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 1 < 𝐴)
8277, 78, 64, 80, 81lttrd 8020 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 0 < 𝐴)
8364, 82elrpd 9625 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 𝐴 ∈ ℝ+)
8483ad4antr 486 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ ℝ+)
8575, 76, 84ltmul1d 9670 . . . . . . . . . . . . . . . . 17 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → ((𝐴↑(𝑚 − 1)) < (𝐴𝑘) ↔ ((𝐴↑(𝑚 − 1)) · 𝐴) < ((𝐴𝑘) · 𝐴)))
8672, 85mpbird 166 . . . . . . . . . . . . . . . 16 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴↑(𝑚 − 1)) < (𝐴𝑘))
87 oveq2 5849 . . . . . . . . . . . . . . . . . . 19 (𝑝 = (𝑚 − 1) → (𝐴𝑝) = (𝐴↑(𝑚 − 1)))
8887breq1d 3991 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑚 − 1) → ((𝐴𝑝) < (𝐴𝑘) ↔ (𝐴↑(𝑚 − 1)) < (𝐴𝑘)))
89 breq1 3984 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑚 − 1) → (𝑝 < 𝑘 ↔ (𝑚 − 1) < 𝑘))
9088, 89imbi12d 233 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑚 − 1) → (((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘) ↔ ((𝐴↑(𝑚 − 1)) < (𝐴𝑘) → (𝑚 − 1) < 𝑘)))
91 simp-4r 532 . . . . . . . . . . . . . . . . 17 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘))
9290, 91, 74rspcdva 2834 . . . . . . . . . . . . . . . 16 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → ((𝐴↑(𝑚 − 1)) < (𝐴𝑘) → (𝑚 − 1) < 𝑘))
9386, 92mpd 13 . . . . . . . . . . . . . . 15 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝑚 − 1) < 𝑘)
94 nnz 9206 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
9594adantl 275 . . . . . . . . . . . . . . . 16 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
9670nn0zd 9307 . . . . . . . . . . . . . . . 16 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ ℤ)
97 zlem1lt 9243 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑚𝑘 ↔ (𝑚 − 1) < 𝑘))
9895, 96, 97syl2anc 409 . . . . . . . . . . . . . . 15 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝑚𝑘 ↔ (𝑚 − 1) < 𝑘))
9993, 98mpbird 166 . . . . . . . . . . . . . 14 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑚𝑘)
100 zleltp1 9242 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑚𝑘𝑚 < (𝑘 + 1)))
10195, 96, 100syl2anc 409 . . . . . . . . . . . . . 14 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝑚𝑘𝑚 < (𝑘 + 1)))
10299, 101mpbid 146 . . . . . . . . . . . . 13 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑚 < (𝑘 + 1))
103 simpr 109 . . . . . . . . . . . . . 14 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 = 0) → 𝑚 = 0)
104 nn0p1gt0 9139 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → 0 < (𝑘 + 1))
105104ad5antr 488 . . . . . . . . . . . . . 14 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 = 0) → 0 < (𝑘 + 1))
106103, 105eqbrtrd 4003 . . . . . . . . . . . . 13 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 = 0) → 𝑚 < (𝑘 + 1))
107 simplr 520 . . . . . . . . . . . . . 14 (((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) → 𝑚 ∈ ℕ0)
108 elnn0 9112 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 ↔ (𝑚 ∈ ℕ ∨ 𝑚 = 0))
109107, 108sylib 121 . . . . . . . . . . . . 13 (((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) → (𝑚 ∈ ℕ ∨ 𝑚 = 0))
110102, 106, 109mpjaodan 788 . . . . . . . . . . . 12 (((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) → 𝑚 < (𝑘 + 1))
111110ex 114 . . . . . . . . . . 11 ((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) → ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1)))
112111ralrimiva 2538 . . . . . . . . . 10 (((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1)))
113112ex 114 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → (∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1))))
11462, 113syl5bir 152 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1))))
115114ex 114 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1)))))
116115a2d 26 . . . . . 6 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘)) → ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1)))))
11723, 29, 35, 41, 57, 116nn0ind 9301 . . . . 5 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁)))
118117imp 123 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁))
11915, 16, 17, 118syl12anc 1226 . . 3 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁))
120 simpl2 991 . . 3 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → 𝑀 ∈ ℕ0)
12114, 119, 120rspcdva 2834 . 2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → ((𝐴𝑀) < (𝐴𝑁) → 𝑀 < 𝑁))
12210, 121impbid 128 1 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  w3a 968   = wceq 1343  wcel 2136  wral 2443   class class class wbr 3981  (class class class)co 5841  cc 7747  cr 7748  0cc0 7749  1c1 7750   + caddc 7752   · cmul 7754   < clt 7929  cle 7930  cmin 8065  cn 8853  0cn0 9110  cz 9187  +crp 9585  cexp 10450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-n0 9111  df-z 9188  df-uz 9463  df-rp 9586  df-seqfrec 10377  df-exp 10451
This theorem is referenced by:  nn0leexp2  10620  isprm5  12070  pclemub  12215
  Copyright terms: Public domain W3C validator