ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ltexp2 GIF version

Theorem nn0ltexp2 10854
Description: Special case of ltexp2 15413 which we use here because we haven't yet defined df-rpcxp 15331 which is used in the current proof of ltexp2 15413. (Contributed by Jim Kingdon, 7-Oct-2024.)
Assertion
Ref Expression
nn0ltexp2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))

Proof of Theorem nn0ltexp2
Dummy variables 𝑘 𝑚 𝑝 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 1039 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝐴 ∈ ℝ)
2 simpll2 1040 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℕ0)
32nn0zd 9493 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℤ)
4 simpll3 1041 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℕ0)
54nn0zd 9493 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℤ)
6 simplr 528 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 1 < 𝐴)
7 simpr 110 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝑀 < 𝑁)
8 ltexp2a 10736 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴𝑀 < 𝑁)) → (𝐴𝑀) < (𝐴𝑁))
91, 3, 5, 6, 7, 8syl32anc 1258 . . 3 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → (𝐴𝑀) < (𝐴𝑁))
109ex 115 . 2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → (𝑀 < 𝑁 → (𝐴𝑀) < (𝐴𝑁)))
11 oveq2 5952 . . . . 5 (𝑚 = 𝑀 → (𝐴𝑚) = (𝐴𝑀))
1211breq1d 4054 . . . 4 (𝑚 = 𝑀 → ((𝐴𝑚) < (𝐴𝑁) ↔ (𝐴𝑀) < (𝐴𝑁)))
13 breq1 4047 . . . 4 (𝑚 = 𝑀 → (𝑚 < 𝑁𝑀 < 𝑁))
1412, 13imbi12d 234 . . 3 (𝑚 = 𝑀 → (((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁) ↔ ((𝐴𝑀) < (𝐴𝑁) → 𝑀 < 𝑁)))
15 simpl3 1005 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → 𝑁 ∈ ℕ0)
16 simpl1 1003 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
17 simpr 110 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → 1 < 𝐴)
18 oveq2 5952 . . . . . . . . . 10 (𝑤 = 0 → (𝐴𝑤) = (𝐴↑0))
1918breq2d 4056 . . . . . . . . 9 (𝑤 = 0 → ((𝐴𝑚) < (𝐴𝑤) ↔ (𝐴𝑚) < (𝐴↑0)))
20 breq2 4048 . . . . . . . . 9 (𝑤 = 0 → (𝑚 < 𝑤𝑚 < 0))
2119, 20imbi12d 234 . . . . . . . 8 (𝑤 = 0 → (((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ((𝐴𝑚) < (𝐴↑0) → 𝑚 < 0)))
2221ralbidv 2506 . . . . . . 7 (𝑤 = 0 → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑0) → 𝑚 < 0)))
2322imbi2d 230 . . . . . 6 (𝑤 = 0 → (((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤)) ↔ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑0) → 𝑚 < 0))))
24 oveq2 5952 . . . . . . . . . 10 (𝑤 = 𝑘 → (𝐴𝑤) = (𝐴𝑘))
2524breq2d 4056 . . . . . . . . 9 (𝑤 = 𝑘 → ((𝐴𝑚) < (𝐴𝑤) ↔ (𝐴𝑚) < (𝐴𝑘)))
26 breq2 4048 . . . . . . . . 9 (𝑤 = 𝑘 → (𝑚 < 𝑤𝑚 < 𝑘))
2725, 26imbi12d 234 . . . . . . . 8 (𝑤 = 𝑘 → (((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘)))
2827ralbidv 2506 . . . . . . 7 (𝑤 = 𝑘 → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘)))
2928imbi2d 230 . . . . . 6 (𝑤 = 𝑘 → (((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤)) ↔ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘))))
30 oveq2 5952 . . . . . . . . . 10 (𝑤 = (𝑘 + 1) → (𝐴𝑤) = (𝐴↑(𝑘 + 1)))
3130breq2d 4056 . . . . . . . . 9 (𝑤 = (𝑘 + 1) → ((𝐴𝑚) < (𝐴𝑤) ↔ (𝐴𝑚) < (𝐴↑(𝑘 + 1))))
32 breq2 4048 . . . . . . . . 9 (𝑤 = (𝑘 + 1) → (𝑚 < 𝑤𝑚 < (𝑘 + 1)))
3331, 32imbi12d 234 . . . . . . . 8 (𝑤 = (𝑘 + 1) → (((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1))))
3433ralbidv 2506 . . . . . . 7 (𝑤 = (𝑘 + 1) → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1))))
3534imbi2d 230 . . . . . 6 (𝑤 = (𝑘 + 1) → (((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤)) ↔ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1)))))
36 oveq2 5952 . . . . . . . . . 10 (𝑤 = 𝑁 → (𝐴𝑤) = (𝐴𝑁))
3736breq2d 4056 . . . . . . . . 9 (𝑤 = 𝑁 → ((𝐴𝑚) < (𝐴𝑤) ↔ (𝐴𝑚) < (𝐴𝑁)))
38 breq2 4048 . . . . . . . . 9 (𝑤 = 𝑁 → (𝑚 < 𝑤𝑚 < 𝑁))
3937, 38imbi12d 234 . . . . . . . 8 (𝑤 = 𝑁 → (((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁)))
4039ralbidv 2506 . . . . . . 7 (𝑤 = 𝑁 → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁)))
4140imbi2d 230 . . . . . 6 (𝑤 = 𝑁 → (((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤)) ↔ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁))))
42 recn 8058 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4342ad2antrr 488 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 𝐴 ∈ ℂ)
4443exp0d 10812 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → (𝐴↑0) = 1)
45 1re 8071 . . . . . . . . . 10 1 ∈ ℝ
4644, 45eqeltrdi 2296 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → (𝐴↑0) ∈ ℝ)
47 simpll 527 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 𝐴 ∈ ℝ)
48 simpr 110 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
4947, 48reexpcld 10835 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → (𝐴𝑚) ∈ ℝ)
50 1red 8087 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℝ)
51 simplr 528 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 1 < 𝐴)
5250, 47, 51ltled 8191 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 1 ≤ 𝐴)
5347, 48, 52expge1d 10837 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 1 ≤ (𝐴𝑚))
5444, 53eqbrtrd 4066 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → (𝐴↑0) ≤ (𝐴𝑚))
5546, 49, 54lensymd 8194 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → ¬ (𝐴𝑚) < (𝐴↑0))
5655pm2.21d 620 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → ((𝐴𝑚) < (𝐴↑0) → 𝑚 < 0))
5756ralrimiva 2579 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑0) → 𝑚 < 0))
58 oveq2 5952 . . . . . . . . . . . 12 (𝑝 = 𝑚 → (𝐴𝑝) = (𝐴𝑚))
5958breq1d 4054 . . . . . . . . . . 11 (𝑝 = 𝑚 → ((𝐴𝑝) < (𝐴𝑘) ↔ (𝐴𝑚) < (𝐴𝑘)))
60 breq1 4047 . . . . . . . . . . 11 (𝑝 = 𝑚 → (𝑝 < 𝑘𝑚 < 𝑘))
6159, 60imbi12d 234 . . . . . . . . . 10 (𝑝 = 𝑚 → (((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘) ↔ ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘)))
6261cbvralv 2738 . . . . . . . . 9 (∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘) ↔ ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘))
63 simplr 528 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴𝑚) < (𝐴↑(𝑘 + 1)))
64 simprl 529 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 𝐴 ∈ ℝ)
6564ad4antr 494 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ ℝ)
6665recnd 8101 . . . . . . . . . . . . . . . . . . 19 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ ℂ)
67 simpr 110 . . . . . . . . . . . . . . . . . . 19 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
68 expm1t 10712 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ) → (𝐴𝑚) = ((𝐴↑(𝑚 − 1)) · 𝐴))
6966, 67, 68syl2anc 411 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴𝑚) = ((𝐴↑(𝑚 − 1)) · 𝐴))
70 simp-5l 543 . . . . . . . . . . . . . . . . . . 19 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ ℕ0)
7166, 70expp1d 10819 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
7263, 69, 713brtr3d 4075 . . . . . . . . . . . . . . . . 17 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → ((𝐴↑(𝑚 − 1)) · 𝐴) < ((𝐴𝑘) · 𝐴))
73 nnm1nn0 9336 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → (𝑚 − 1) ∈ ℕ0)
7473adantl 277 . . . . . . . . . . . . . . . . . . 19 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝑚 − 1) ∈ ℕ0)
7565, 74reexpcld 10835 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴↑(𝑚 − 1)) ∈ ℝ)
7665, 70reexpcld 10835 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴𝑘) ∈ ℝ)
77 0red 8073 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 0 ∈ ℝ)
78 1red 8087 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 1 ∈ ℝ)
79 0lt1 8199 . . . . . . . . . . . . . . . . . . . . . 22 0 < 1
8079a1i 9 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 0 < 1)
81 simprr 531 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 1 < 𝐴)
8277, 78, 64, 80, 81lttrd 8198 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 0 < 𝐴)
8364, 82elrpd 9815 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 𝐴 ∈ ℝ+)
8483ad4antr 494 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ ℝ+)
8575, 76, 84ltmul1d 9860 . . . . . . . . . . . . . . . . 17 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → ((𝐴↑(𝑚 − 1)) < (𝐴𝑘) ↔ ((𝐴↑(𝑚 − 1)) · 𝐴) < ((𝐴𝑘) · 𝐴)))
8672, 85mpbird 167 . . . . . . . . . . . . . . . 16 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴↑(𝑚 − 1)) < (𝐴𝑘))
87 oveq2 5952 . . . . . . . . . . . . . . . . . . 19 (𝑝 = (𝑚 − 1) → (𝐴𝑝) = (𝐴↑(𝑚 − 1)))
8887breq1d 4054 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑚 − 1) → ((𝐴𝑝) < (𝐴𝑘) ↔ (𝐴↑(𝑚 − 1)) < (𝐴𝑘)))
89 breq1 4047 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑚 − 1) → (𝑝 < 𝑘 ↔ (𝑚 − 1) < 𝑘))
9088, 89imbi12d 234 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑚 − 1) → (((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘) ↔ ((𝐴↑(𝑚 − 1)) < (𝐴𝑘) → (𝑚 − 1) < 𝑘)))
91 simp-4r 542 . . . . . . . . . . . . . . . . 17 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘))
9290, 91, 74rspcdva 2882 . . . . . . . . . . . . . . . 16 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → ((𝐴↑(𝑚 − 1)) < (𝐴𝑘) → (𝑚 − 1) < 𝑘))
9386, 92mpd 13 . . . . . . . . . . . . . . 15 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝑚 − 1) < 𝑘)
94 nnz 9391 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
9594adantl 277 . . . . . . . . . . . . . . . 16 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
9670nn0zd 9493 . . . . . . . . . . . . . . . 16 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ ℤ)
97 zlem1lt 9429 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑚𝑘 ↔ (𝑚 − 1) < 𝑘))
9895, 96, 97syl2anc 411 . . . . . . . . . . . . . . 15 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝑚𝑘 ↔ (𝑚 − 1) < 𝑘))
9993, 98mpbird 167 . . . . . . . . . . . . . 14 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑚𝑘)
100 zleltp1 9428 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑚𝑘𝑚 < (𝑘 + 1)))
10195, 96, 100syl2anc 411 . . . . . . . . . . . . . 14 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝑚𝑘𝑚 < (𝑘 + 1)))
10299, 101mpbid 147 . . . . . . . . . . . . 13 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑚 < (𝑘 + 1))
103 simpr 110 . . . . . . . . . . . . . 14 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 = 0) → 𝑚 = 0)
104 nn0p1gt0 9324 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → 0 < (𝑘 + 1))
105104ad5antr 496 . . . . . . . . . . . . . 14 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 = 0) → 0 < (𝑘 + 1))
106103, 105eqbrtrd 4066 . . . . . . . . . . . . 13 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 = 0) → 𝑚 < (𝑘 + 1))
107 simplr 528 . . . . . . . . . . . . . 14 (((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) → 𝑚 ∈ ℕ0)
108 elnn0 9297 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 ↔ (𝑚 ∈ ℕ ∨ 𝑚 = 0))
109107, 108sylib 122 . . . . . . . . . . . . 13 (((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) → (𝑚 ∈ ℕ ∨ 𝑚 = 0))
110102, 106, 109mpjaodan 800 . . . . . . . . . . . 12 (((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) → 𝑚 < (𝑘 + 1))
111110ex 115 . . . . . . . . . . 11 ((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) → ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1)))
112111ralrimiva 2579 . . . . . . . . . 10 (((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1)))
113112ex 115 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → (∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1))))
11462, 113biimtrrid 153 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1))))
115114ex 115 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1)))))
116115a2d 26 . . . . . 6 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘)) → ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1)))))
11723, 29, 35, 41, 57, 116nn0ind 9487 . . . . 5 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁)))
118117imp 124 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁))
11915, 16, 17, 118syl12anc 1248 . . 3 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁))
120 simpl2 1004 . . 3 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → 𝑀 ∈ ℕ0)
12114, 119, 120rspcdva 2882 . 2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → ((𝐴𝑀) < (𝐴𝑁) → 𝑀 < 𝑁))
12210, 121impbid 129 1 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710  w3a 981   = wceq 1373  wcel 2176  wral 2484   class class class wbr 4044  (class class class)co 5944  cc 7923  cr 7924  0cc0 7925  1c1 7926   + caddc 7928   · cmul 7930   < clt 8107  cle 8108  cmin 8243  cn 9036  0cn0 9295  cz 9372  +crp 9775  cexp 10683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-seqfrec 10593  df-exp 10684
This theorem is referenced by:  nn0leexp2  10855  bitsfzolem  12265  bitsfzo  12266  isprm5  12464  pclemub  12610
  Copyright terms: Public domain W3C validator