ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ltexp2 GIF version

Theorem nn0ltexp2 10674
Description: Special case of ltexp2 14027 which we use here because we haven't yet defined df-rpcxp 13947 which is used in the current proof of ltexp2 14027. (Contributed by Jim Kingdon, 7-Oct-2024.)
Assertion
Ref Expression
nn0ltexp2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))

Proof of Theorem nn0ltexp2
Dummy variables 𝑘 𝑚 𝑝 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 1036 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝐴 ∈ ℝ)
2 simpll2 1037 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℕ0)
32nn0zd 9362 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℤ)
4 simpll3 1038 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℕ0)
54nn0zd 9362 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℤ)
6 simplr 528 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 1 < 𝐴)
7 simpr 110 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝑀 < 𝑁)
8 ltexp2a 10558 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴𝑀 < 𝑁)) → (𝐴𝑀) < (𝐴𝑁))
91, 3, 5, 6, 7, 8syl32anc 1246 . . 3 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → (𝐴𝑀) < (𝐴𝑁))
109ex 115 . 2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → (𝑀 < 𝑁 → (𝐴𝑀) < (𝐴𝑁)))
11 oveq2 5877 . . . . 5 (𝑚 = 𝑀 → (𝐴𝑚) = (𝐴𝑀))
1211breq1d 4010 . . . 4 (𝑚 = 𝑀 → ((𝐴𝑚) < (𝐴𝑁) ↔ (𝐴𝑀) < (𝐴𝑁)))
13 breq1 4003 . . . 4 (𝑚 = 𝑀 → (𝑚 < 𝑁𝑀 < 𝑁))
1412, 13imbi12d 234 . . 3 (𝑚 = 𝑀 → (((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁) ↔ ((𝐴𝑀) < (𝐴𝑁) → 𝑀 < 𝑁)))
15 simpl3 1002 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → 𝑁 ∈ ℕ0)
16 simpl1 1000 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
17 simpr 110 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → 1 < 𝐴)
18 oveq2 5877 . . . . . . . . . 10 (𝑤 = 0 → (𝐴𝑤) = (𝐴↑0))
1918breq2d 4012 . . . . . . . . 9 (𝑤 = 0 → ((𝐴𝑚) < (𝐴𝑤) ↔ (𝐴𝑚) < (𝐴↑0)))
20 breq2 4004 . . . . . . . . 9 (𝑤 = 0 → (𝑚 < 𝑤𝑚 < 0))
2119, 20imbi12d 234 . . . . . . . 8 (𝑤 = 0 → (((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ((𝐴𝑚) < (𝐴↑0) → 𝑚 < 0)))
2221ralbidv 2477 . . . . . . 7 (𝑤 = 0 → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑0) → 𝑚 < 0)))
2322imbi2d 230 . . . . . 6 (𝑤 = 0 → (((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤)) ↔ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑0) → 𝑚 < 0))))
24 oveq2 5877 . . . . . . . . . 10 (𝑤 = 𝑘 → (𝐴𝑤) = (𝐴𝑘))
2524breq2d 4012 . . . . . . . . 9 (𝑤 = 𝑘 → ((𝐴𝑚) < (𝐴𝑤) ↔ (𝐴𝑚) < (𝐴𝑘)))
26 breq2 4004 . . . . . . . . 9 (𝑤 = 𝑘 → (𝑚 < 𝑤𝑚 < 𝑘))
2725, 26imbi12d 234 . . . . . . . 8 (𝑤 = 𝑘 → (((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘)))
2827ralbidv 2477 . . . . . . 7 (𝑤 = 𝑘 → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘)))
2928imbi2d 230 . . . . . 6 (𝑤 = 𝑘 → (((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤)) ↔ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘))))
30 oveq2 5877 . . . . . . . . . 10 (𝑤 = (𝑘 + 1) → (𝐴𝑤) = (𝐴↑(𝑘 + 1)))
3130breq2d 4012 . . . . . . . . 9 (𝑤 = (𝑘 + 1) → ((𝐴𝑚) < (𝐴𝑤) ↔ (𝐴𝑚) < (𝐴↑(𝑘 + 1))))
32 breq2 4004 . . . . . . . . 9 (𝑤 = (𝑘 + 1) → (𝑚 < 𝑤𝑚 < (𝑘 + 1)))
3331, 32imbi12d 234 . . . . . . . 8 (𝑤 = (𝑘 + 1) → (((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1))))
3433ralbidv 2477 . . . . . . 7 (𝑤 = (𝑘 + 1) → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1))))
3534imbi2d 230 . . . . . 6 (𝑤 = (𝑘 + 1) → (((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤)) ↔ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1)))))
36 oveq2 5877 . . . . . . . . . 10 (𝑤 = 𝑁 → (𝐴𝑤) = (𝐴𝑁))
3736breq2d 4012 . . . . . . . . 9 (𝑤 = 𝑁 → ((𝐴𝑚) < (𝐴𝑤) ↔ (𝐴𝑚) < (𝐴𝑁)))
38 breq2 4004 . . . . . . . . 9 (𝑤 = 𝑁 → (𝑚 < 𝑤𝑚 < 𝑁))
3937, 38imbi12d 234 . . . . . . . 8 (𝑤 = 𝑁 → (((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁)))
4039ralbidv 2477 . . . . . . 7 (𝑤 = 𝑁 → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁)))
4140imbi2d 230 . . . . . 6 (𝑤 = 𝑁 → (((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤)) ↔ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁))))
42 recn 7935 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4342ad2antrr 488 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 𝐴 ∈ ℂ)
4443exp0d 10633 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → (𝐴↑0) = 1)
45 1re 7947 . . . . . . . . . 10 1 ∈ ℝ
4644, 45eqeltrdi 2268 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → (𝐴↑0) ∈ ℝ)
47 simpll 527 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 𝐴 ∈ ℝ)
48 simpr 110 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
4947, 48reexpcld 10656 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → (𝐴𝑚) ∈ ℝ)
50 1red 7963 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℝ)
51 simplr 528 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 1 < 𝐴)
5250, 47, 51ltled 8066 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 1 ≤ 𝐴)
5347, 48, 52expge1d 10658 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 1 ≤ (𝐴𝑚))
5444, 53eqbrtrd 4022 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → (𝐴↑0) ≤ (𝐴𝑚))
5546, 49, 54lensymd 8069 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → ¬ (𝐴𝑚) < (𝐴↑0))
5655pm2.21d 619 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → ((𝐴𝑚) < (𝐴↑0) → 𝑚 < 0))
5756ralrimiva 2550 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑0) → 𝑚 < 0))
58 oveq2 5877 . . . . . . . . . . . 12 (𝑝 = 𝑚 → (𝐴𝑝) = (𝐴𝑚))
5958breq1d 4010 . . . . . . . . . . 11 (𝑝 = 𝑚 → ((𝐴𝑝) < (𝐴𝑘) ↔ (𝐴𝑚) < (𝐴𝑘)))
60 breq1 4003 . . . . . . . . . . 11 (𝑝 = 𝑚 → (𝑝 < 𝑘𝑚 < 𝑘))
6159, 60imbi12d 234 . . . . . . . . . 10 (𝑝 = 𝑚 → (((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘) ↔ ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘)))
6261cbvralv 2703 . . . . . . . . 9 (∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘) ↔ ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘))
63 simplr 528 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴𝑚) < (𝐴↑(𝑘 + 1)))
64 simprl 529 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 𝐴 ∈ ℝ)
6564ad4antr 494 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ ℝ)
6665recnd 7976 . . . . . . . . . . . . . . . . . . 19 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ ℂ)
67 simpr 110 . . . . . . . . . . . . . . . . . . 19 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
68 expm1t 10534 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ) → (𝐴𝑚) = ((𝐴↑(𝑚 − 1)) · 𝐴))
6966, 67, 68syl2anc 411 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴𝑚) = ((𝐴↑(𝑚 − 1)) · 𝐴))
70 simp-5l 543 . . . . . . . . . . . . . . . . . . 19 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ ℕ0)
7166, 70expp1d 10640 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
7263, 69, 713brtr3d 4031 . . . . . . . . . . . . . . . . 17 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → ((𝐴↑(𝑚 − 1)) · 𝐴) < ((𝐴𝑘) · 𝐴))
73 nnm1nn0 9206 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → (𝑚 − 1) ∈ ℕ0)
7473adantl 277 . . . . . . . . . . . . . . . . . . 19 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝑚 − 1) ∈ ℕ0)
7565, 74reexpcld 10656 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴↑(𝑚 − 1)) ∈ ℝ)
7665, 70reexpcld 10656 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴𝑘) ∈ ℝ)
77 0red 7949 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 0 ∈ ℝ)
78 1red 7963 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 1 ∈ ℝ)
79 0lt1 8074 . . . . . . . . . . . . . . . . . . . . . 22 0 < 1
8079a1i 9 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 0 < 1)
81 simprr 531 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 1 < 𝐴)
8277, 78, 64, 80, 81lttrd 8073 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 0 < 𝐴)
8364, 82elrpd 9680 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 𝐴 ∈ ℝ+)
8483ad4antr 494 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ ℝ+)
8575, 76, 84ltmul1d 9725 . . . . . . . . . . . . . . . . 17 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → ((𝐴↑(𝑚 − 1)) < (𝐴𝑘) ↔ ((𝐴↑(𝑚 − 1)) · 𝐴) < ((𝐴𝑘) · 𝐴)))
8672, 85mpbird 167 . . . . . . . . . . . . . . . 16 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴↑(𝑚 − 1)) < (𝐴𝑘))
87 oveq2 5877 . . . . . . . . . . . . . . . . . . 19 (𝑝 = (𝑚 − 1) → (𝐴𝑝) = (𝐴↑(𝑚 − 1)))
8887breq1d 4010 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑚 − 1) → ((𝐴𝑝) < (𝐴𝑘) ↔ (𝐴↑(𝑚 − 1)) < (𝐴𝑘)))
89 breq1 4003 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑚 − 1) → (𝑝 < 𝑘 ↔ (𝑚 − 1) < 𝑘))
9088, 89imbi12d 234 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑚 − 1) → (((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘) ↔ ((𝐴↑(𝑚 − 1)) < (𝐴𝑘) → (𝑚 − 1) < 𝑘)))
91 simp-4r 542 . . . . . . . . . . . . . . . . 17 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘))
9290, 91, 74rspcdva 2846 . . . . . . . . . . . . . . . 16 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → ((𝐴↑(𝑚 − 1)) < (𝐴𝑘) → (𝑚 − 1) < 𝑘))
9386, 92mpd 13 . . . . . . . . . . . . . . 15 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝑚 − 1) < 𝑘)
94 nnz 9261 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
9594adantl 277 . . . . . . . . . . . . . . . 16 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
9670nn0zd 9362 . . . . . . . . . . . . . . . 16 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ ℤ)
97 zlem1lt 9298 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑚𝑘 ↔ (𝑚 − 1) < 𝑘))
9895, 96, 97syl2anc 411 . . . . . . . . . . . . . . 15 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝑚𝑘 ↔ (𝑚 − 1) < 𝑘))
9993, 98mpbird 167 . . . . . . . . . . . . . 14 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑚𝑘)
100 zleltp1 9297 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑚𝑘𝑚 < (𝑘 + 1)))
10195, 96, 100syl2anc 411 . . . . . . . . . . . . . 14 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝑚𝑘𝑚 < (𝑘 + 1)))
10299, 101mpbid 147 . . . . . . . . . . . . 13 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑚 < (𝑘 + 1))
103 simpr 110 . . . . . . . . . . . . . 14 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 = 0) → 𝑚 = 0)
104 nn0p1gt0 9194 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → 0 < (𝑘 + 1))
105104ad5antr 496 . . . . . . . . . . . . . 14 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 = 0) → 0 < (𝑘 + 1))
106103, 105eqbrtrd 4022 . . . . . . . . . . . . 13 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 = 0) → 𝑚 < (𝑘 + 1))
107 simplr 528 . . . . . . . . . . . . . 14 (((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) → 𝑚 ∈ ℕ0)
108 elnn0 9167 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 ↔ (𝑚 ∈ ℕ ∨ 𝑚 = 0))
109107, 108sylib 122 . . . . . . . . . . . . 13 (((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) → (𝑚 ∈ ℕ ∨ 𝑚 = 0))
110102, 106, 109mpjaodan 798 . . . . . . . . . . . 12 (((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) → 𝑚 < (𝑘 + 1))
111110ex 115 . . . . . . . . . . 11 ((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) → ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1)))
112111ralrimiva 2550 . . . . . . . . . 10 (((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1)))
113112ex 115 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → (∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1))))
11462, 113biimtrrid 153 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1))))
115114ex 115 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1)))))
116115a2d 26 . . . . . 6 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘)) → ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1)))))
11723, 29, 35, 41, 57, 116nn0ind 9356 . . . . 5 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁)))
118117imp 124 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁))
11915, 16, 17, 118syl12anc 1236 . . 3 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁))
120 simpl2 1001 . . 3 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → 𝑀 ∈ ℕ0)
12114, 119, 120rspcdva 2846 . 2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → ((𝐴𝑀) < (𝐴𝑁) → 𝑀 < 𝑁))
12210, 121impbid 129 1 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708  w3a 978   = wceq 1353  wcel 2148  wral 2455   class class class wbr 4000  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807   < clt 7982  cle 7983  cmin 8118  cn 8908  0cn0 9165  cz 9242  +crp 9640  cexp 10505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506
This theorem is referenced by:  nn0leexp2  10675  isprm5  12125  pclemub  12270
  Copyright terms: Public domain W3C validator