ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ltexp2 GIF version

Theorem nn0ltexp2 10644
Description: Special case of ltexp2 13654 which we use here because we haven't yet defined df-rpcxp 13574 which is used in the current proof of ltexp2 13654. (Contributed by Jim Kingdon, 7-Oct-2024.)
Assertion
Ref Expression
nn0ltexp2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))

Proof of Theorem nn0ltexp2
Dummy variables 𝑘 𝑚 𝑝 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 1031 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝐴 ∈ ℝ)
2 simpll2 1032 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℕ0)
32nn0zd 9332 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℤ)
4 simpll3 1033 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℕ0)
54nn0zd 9332 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℤ)
6 simplr 525 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 1 < 𝐴)
7 simpr 109 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → 𝑀 < 𝑁)
8 ltexp2a 10528 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴𝑀 < 𝑁)) → (𝐴𝑀) < (𝐴𝑁))
91, 3, 5, 6, 7, 8syl32anc 1241 . . 3 ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) ∧ 𝑀 < 𝑁) → (𝐴𝑀) < (𝐴𝑁))
109ex 114 . 2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → (𝑀 < 𝑁 → (𝐴𝑀) < (𝐴𝑁)))
11 oveq2 5861 . . . . 5 (𝑚 = 𝑀 → (𝐴𝑚) = (𝐴𝑀))
1211breq1d 3999 . . . 4 (𝑚 = 𝑀 → ((𝐴𝑚) < (𝐴𝑁) ↔ (𝐴𝑀) < (𝐴𝑁)))
13 breq1 3992 . . . 4 (𝑚 = 𝑀 → (𝑚 < 𝑁𝑀 < 𝑁))
1412, 13imbi12d 233 . . 3 (𝑚 = 𝑀 → (((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁) ↔ ((𝐴𝑀) < (𝐴𝑁) → 𝑀 < 𝑁)))
15 simpl3 997 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → 𝑁 ∈ ℕ0)
16 simpl1 995 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
17 simpr 109 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → 1 < 𝐴)
18 oveq2 5861 . . . . . . . . . 10 (𝑤 = 0 → (𝐴𝑤) = (𝐴↑0))
1918breq2d 4001 . . . . . . . . 9 (𝑤 = 0 → ((𝐴𝑚) < (𝐴𝑤) ↔ (𝐴𝑚) < (𝐴↑0)))
20 breq2 3993 . . . . . . . . 9 (𝑤 = 0 → (𝑚 < 𝑤𝑚 < 0))
2119, 20imbi12d 233 . . . . . . . 8 (𝑤 = 0 → (((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ((𝐴𝑚) < (𝐴↑0) → 𝑚 < 0)))
2221ralbidv 2470 . . . . . . 7 (𝑤 = 0 → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑0) → 𝑚 < 0)))
2322imbi2d 229 . . . . . 6 (𝑤 = 0 → (((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤)) ↔ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑0) → 𝑚 < 0))))
24 oveq2 5861 . . . . . . . . . 10 (𝑤 = 𝑘 → (𝐴𝑤) = (𝐴𝑘))
2524breq2d 4001 . . . . . . . . 9 (𝑤 = 𝑘 → ((𝐴𝑚) < (𝐴𝑤) ↔ (𝐴𝑚) < (𝐴𝑘)))
26 breq2 3993 . . . . . . . . 9 (𝑤 = 𝑘 → (𝑚 < 𝑤𝑚 < 𝑘))
2725, 26imbi12d 233 . . . . . . . 8 (𝑤 = 𝑘 → (((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘)))
2827ralbidv 2470 . . . . . . 7 (𝑤 = 𝑘 → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘)))
2928imbi2d 229 . . . . . 6 (𝑤 = 𝑘 → (((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤)) ↔ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘))))
30 oveq2 5861 . . . . . . . . . 10 (𝑤 = (𝑘 + 1) → (𝐴𝑤) = (𝐴↑(𝑘 + 1)))
3130breq2d 4001 . . . . . . . . 9 (𝑤 = (𝑘 + 1) → ((𝐴𝑚) < (𝐴𝑤) ↔ (𝐴𝑚) < (𝐴↑(𝑘 + 1))))
32 breq2 3993 . . . . . . . . 9 (𝑤 = (𝑘 + 1) → (𝑚 < 𝑤𝑚 < (𝑘 + 1)))
3331, 32imbi12d 233 . . . . . . . 8 (𝑤 = (𝑘 + 1) → (((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1))))
3433ralbidv 2470 . . . . . . 7 (𝑤 = (𝑘 + 1) → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1))))
3534imbi2d 229 . . . . . 6 (𝑤 = (𝑘 + 1) → (((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤)) ↔ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1)))))
36 oveq2 5861 . . . . . . . . . 10 (𝑤 = 𝑁 → (𝐴𝑤) = (𝐴𝑁))
3736breq2d 4001 . . . . . . . . 9 (𝑤 = 𝑁 → ((𝐴𝑚) < (𝐴𝑤) ↔ (𝐴𝑚) < (𝐴𝑁)))
38 breq2 3993 . . . . . . . . 9 (𝑤 = 𝑁 → (𝑚 < 𝑤𝑚 < 𝑁))
3937, 38imbi12d 233 . . . . . . . 8 (𝑤 = 𝑁 → (((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁)))
4039ralbidv 2470 . . . . . . 7 (𝑤 = 𝑁 → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤) ↔ ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁)))
4140imbi2d 229 . . . . . 6 (𝑤 = 𝑁 → (((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑤) → 𝑚 < 𝑤)) ↔ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁))))
42 recn 7907 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4342ad2antrr 485 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 𝐴 ∈ ℂ)
4443exp0d 10603 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → (𝐴↑0) = 1)
45 1re 7919 . . . . . . . . . 10 1 ∈ ℝ
4644, 45eqeltrdi 2261 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → (𝐴↑0) ∈ ℝ)
47 simpll 524 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 𝐴 ∈ ℝ)
48 simpr 109 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
4947, 48reexpcld 10626 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → (𝐴𝑚) ∈ ℝ)
50 1red 7935 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℝ)
51 simplr 525 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 1 < 𝐴)
5250, 47, 51ltled 8038 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 1 ≤ 𝐴)
5347, 48, 52expge1d 10628 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → 1 ≤ (𝐴𝑚))
5444, 53eqbrtrd 4011 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → (𝐴↑0) ≤ (𝐴𝑚))
5546, 49, 54lensymd 8041 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → ¬ (𝐴𝑚) < (𝐴↑0))
5655pm2.21d 614 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑚 ∈ ℕ0) → ((𝐴𝑚) < (𝐴↑0) → 𝑚 < 0))
5756ralrimiva 2543 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑0) → 𝑚 < 0))
58 oveq2 5861 . . . . . . . . . . . 12 (𝑝 = 𝑚 → (𝐴𝑝) = (𝐴𝑚))
5958breq1d 3999 . . . . . . . . . . 11 (𝑝 = 𝑚 → ((𝐴𝑝) < (𝐴𝑘) ↔ (𝐴𝑚) < (𝐴𝑘)))
60 breq1 3992 . . . . . . . . . . 11 (𝑝 = 𝑚 → (𝑝 < 𝑘𝑚 < 𝑘))
6159, 60imbi12d 233 . . . . . . . . . 10 (𝑝 = 𝑚 → (((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘) ↔ ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘)))
6261cbvralv 2696 . . . . . . . . 9 (∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘) ↔ ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘))
63 simplr 525 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴𝑚) < (𝐴↑(𝑘 + 1)))
64 simprl 526 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 𝐴 ∈ ℝ)
6564ad4antr 491 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ ℝ)
6665recnd 7948 . . . . . . . . . . . . . . . . . . 19 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ ℂ)
67 simpr 109 . . . . . . . . . . . . . . . . . . 19 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
68 expm1t 10504 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ) → (𝐴𝑚) = ((𝐴↑(𝑚 − 1)) · 𝐴))
6966, 67, 68syl2anc 409 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴𝑚) = ((𝐴↑(𝑚 − 1)) · 𝐴))
70 simp-5l 538 . . . . . . . . . . . . . . . . . . 19 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ ℕ0)
7166, 70expp1d 10610 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
7263, 69, 713brtr3d 4020 . . . . . . . . . . . . . . . . 17 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → ((𝐴↑(𝑚 − 1)) · 𝐴) < ((𝐴𝑘) · 𝐴))
73 nnm1nn0 9176 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → (𝑚 − 1) ∈ ℕ0)
7473adantl 275 . . . . . . . . . . . . . . . . . . 19 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝑚 − 1) ∈ ℕ0)
7565, 74reexpcld 10626 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴↑(𝑚 − 1)) ∈ ℝ)
7665, 70reexpcld 10626 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴𝑘) ∈ ℝ)
77 0red 7921 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 0 ∈ ℝ)
78 1red 7935 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 1 ∈ ℝ)
79 0lt1 8046 . . . . . . . . . . . . . . . . . . . . . 22 0 < 1
8079a1i 9 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 0 < 1)
81 simprr 527 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 1 < 𝐴)
8277, 78, 64, 80, 81lttrd 8045 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 0 < 𝐴)
8364, 82elrpd 9650 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → 𝐴 ∈ ℝ+)
8483ad4antr 491 . . . . . . . . . . . . . . . . . 18 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ ℝ+)
8575, 76, 84ltmul1d 9695 . . . . . . . . . . . . . . . . 17 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → ((𝐴↑(𝑚 − 1)) < (𝐴𝑘) ↔ ((𝐴↑(𝑚 − 1)) · 𝐴) < ((𝐴𝑘) · 𝐴)))
8672, 85mpbird 166 . . . . . . . . . . . . . . . 16 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝐴↑(𝑚 − 1)) < (𝐴𝑘))
87 oveq2 5861 . . . . . . . . . . . . . . . . . . 19 (𝑝 = (𝑚 − 1) → (𝐴𝑝) = (𝐴↑(𝑚 − 1)))
8887breq1d 3999 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑚 − 1) → ((𝐴𝑝) < (𝐴𝑘) ↔ (𝐴↑(𝑚 − 1)) < (𝐴𝑘)))
89 breq1 3992 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑚 − 1) → (𝑝 < 𝑘 ↔ (𝑚 − 1) < 𝑘))
9088, 89imbi12d 233 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑚 − 1) → (((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘) ↔ ((𝐴↑(𝑚 − 1)) < (𝐴𝑘) → (𝑚 − 1) < 𝑘)))
91 simp-4r 537 . . . . . . . . . . . . . . . . 17 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘))
9290, 91, 74rspcdva 2839 . . . . . . . . . . . . . . . 16 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → ((𝐴↑(𝑚 − 1)) < (𝐴𝑘) → (𝑚 − 1) < 𝑘))
9386, 92mpd 13 . . . . . . . . . . . . . . 15 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝑚 − 1) < 𝑘)
94 nnz 9231 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
9594adantl 275 . . . . . . . . . . . . . . . 16 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
9670nn0zd 9332 . . . . . . . . . . . . . . . 16 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ ℤ)
97 zlem1lt 9268 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑚𝑘 ↔ (𝑚 − 1) < 𝑘))
9895, 96, 97syl2anc 409 . . . . . . . . . . . . . . 15 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝑚𝑘 ↔ (𝑚 − 1) < 𝑘))
9993, 98mpbird 166 . . . . . . . . . . . . . 14 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑚𝑘)
100 zleltp1 9267 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑚𝑘𝑚 < (𝑘 + 1)))
10195, 96, 100syl2anc 409 . . . . . . . . . . . . . 14 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → (𝑚𝑘𝑚 < (𝑘 + 1)))
10299, 101mpbid 146 . . . . . . . . . . . . 13 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 ∈ ℕ) → 𝑚 < (𝑘 + 1))
103 simpr 109 . . . . . . . . . . . . . 14 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 = 0) → 𝑚 = 0)
104 nn0p1gt0 9164 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → 0 < (𝑘 + 1))
105104ad5antr 493 . . . . . . . . . . . . . 14 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 = 0) → 0 < (𝑘 + 1))
106103, 105eqbrtrd 4011 . . . . . . . . . . . . 13 ((((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) ∧ 𝑚 = 0) → 𝑚 < (𝑘 + 1))
107 simplr 525 . . . . . . . . . . . . . 14 (((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) → 𝑚 ∈ ℕ0)
108 elnn0 9137 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 ↔ (𝑚 ∈ ℕ ∨ 𝑚 = 0))
109107, 108sylib 121 . . . . . . . . . . . . 13 (((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) → (𝑚 ∈ ℕ ∨ 𝑚 = 0))
110102, 106, 109mpjaodan 793 . . . . . . . . . . . 12 (((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) ∧ (𝐴𝑚) < (𝐴↑(𝑘 + 1))) → 𝑚 < (𝑘 + 1))
111110ex 114 . . . . . . . . . . 11 ((((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) ∧ 𝑚 ∈ ℕ0) → ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1)))
112111ralrimiva 2543 . . . . . . . . . 10 (((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) ∧ ∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘)) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1)))
113112ex 114 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → (∀𝑝 ∈ ℕ0 ((𝐴𝑝) < (𝐴𝑘) → 𝑝 < 𝑘) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1))))
11462, 113syl5bir 152 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1))))
115114ex 114 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1)))))
116115a2d 26 . . . . . 6 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑘) → 𝑚 < 𝑘)) → ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴↑(𝑘 + 1)) → 𝑚 < (𝑘 + 1)))))
11723, 29, 35, 41, 57, 116nn0ind 9326 . . . . 5 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁)))
118117imp 123 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐴 ∈ ℝ ∧ 1 < 𝐴)) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁))
11915, 16, 17, 118syl12anc 1231 . . 3 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → ∀𝑚 ∈ ℕ0 ((𝐴𝑚) < (𝐴𝑁) → 𝑚 < 𝑁))
120 simpl2 996 . . 3 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → 𝑀 ∈ ℕ0)
12114, 119, 120rspcdva 2839 . 2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → ((𝐴𝑀) < (𝐴𝑁) → 𝑀 < 𝑁))
12210, 121impbid 128 1 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703  w3a 973   = wceq 1348  wcel 2141  wral 2448   class class class wbr 3989  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779   < clt 7954  cle 7955  cmin 8090  cn 8878  0cn0 9135  cz 9212  +crp 9610  cexp 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476
This theorem is referenced by:  nn0leexp2  10645  isprm5  12096  pclemub  12241
  Copyright terms: Public domain W3C validator