ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3f1o GIF version

Theorem seq3f1o 10228
Description: Rearrange a sum via an arbitrary bijection on (𝑀...𝑁). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Jim Kingdon, 3-Nov-2022.)
Hypotheses
Ref Expression
iseqf1o.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqf1o.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
iseqf1o.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
iseqf1o.4 (𝜑𝑁 ∈ (ℤ𝑀))
iseqf1o.6 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1o.7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqf1o.h ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐻𝑥) ∈ 𝑆)
iseqf1o.8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = (𝐺‘(𝐹𝑘)))
Assertion
Ref Expression
seq3f1o (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑥,𝑀,𝑦,𝑧   𝑘,𝑀   𝑥,𝑁,𝑦,𝑧   𝑘,𝑁   𝑥,𝐺,𝑦,𝑧   𝑘,𝐺   𝑥,𝐹,𝑦,𝑧   𝑘,𝐹   𝑥,𝐻,𝑦,𝑘   𝑥,𝑆,𝑦,𝑧   𝑆,𝑘   𝑥, + ,𝑦,𝑧   + ,𝑘   𝜑,𝑥,𝑦,𝑧   𝜑,𝑘,𝑥,𝑦
Allowed substitution hint:   𝐻(𝑧)

Proof of Theorem seq3f1o
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqf1o.4 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 elfzle2 9759 . . . . . 6 (𝑘 ∈ (𝑀...𝑁) → 𝑘𝑁)
32iftrued 3449 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → if(𝑘𝑁, (𝐺‘(𝐹𝑘)), (𝐺𝑀)) = (𝐺‘(𝐹𝑘)))
43adantl 273 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → if(𝑘𝑁, (𝐺‘(𝐹𝑘)), (𝐺𝑀)) = (𝐺‘(𝐹𝑘)))
5 elfzuz 9753 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
6 fveq2 5387 . . . . . . . 8 (𝑥 = (𝐹𝑘) → (𝐺𝑥) = (𝐺‘(𝐹𝑘)))
76eleq1d 2184 . . . . . . 7 (𝑥 = (𝐹𝑘) → ((𝐺𝑥) ∈ 𝑆 ↔ (𝐺‘(𝐹𝑘)) ∈ 𝑆))
8 iseqf1o.7 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
98ralrimiva 2480 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
109adantr 272 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
11 iseqf1o.6 . . . . . . . . . 10 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
12 f1of 5333 . . . . . . . . . 10 (𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐹:(𝑀...𝑁)⟶(𝑀...𝑁))
1311, 12syl 14 . . . . . . . . 9 (𝜑𝐹:(𝑀...𝑁)⟶(𝑀...𝑁))
1413ffvelrnda 5521 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ (𝑀...𝑁))
15 elfzuz 9753 . . . . . . . 8 ((𝐹𝑘) ∈ (𝑀...𝑁) → (𝐹𝑘) ∈ (ℤ𝑀))
1614, 15syl 14 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ (ℤ𝑀))
177, 10, 16rspcdva 2766 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺‘(𝐹𝑘)) ∈ 𝑆)
184, 17eqeltrd 2192 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → if(𝑘𝑁, (𝐺‘(𝐹𝑘)), (𝐺𝑀)) ∈ 𝑆)
19 breq1 3900 . . . . . . 7 (𝑎 = 𝑘 → (𝑎𝑁𝑘𝑁))
20 2fveq3 5392 . . . . . . 7 (𝑎 = 𝑘 → (𝐺‘(𝐹𝑎)) = (𝐺‘(𝐹𝑘)))
2119, 20ifbieq1d 3462 . . . . . 6 (𝑎 = 𝑘 → if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀)) = if(𝑘𝑁, (𝐺‘(𝐹𝑘)), (𝐺𝑀)))
22 eqid 2115 . . . . . 6 (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀))) = (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀)))
2321, 22fvmptg 5463 . . . . 5 ((𝑘 ∈ (ℤ𝑀) ∧ if(𝑘𝑁, (𝐺‘(𝐹𝑘)), (𝐺𝑀)) ∈ 𝑆) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀)))‘𝑘) = if(𝑘𝑁, (𝐺‘(𝐹𝑘)), (𝐺𝑀)))
245, 18, 23syl2an2 566 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀)))‘𝑘) = if(𝑘𝑁, (𝐺‘(𝐹𝑘)), (𝐺𝑀)))
25 iseqf1o.8 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = (𝐺‘(𝐹𝑘)))
264, 24, 253eqtr4rd 2159 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀)))‘𝑘))
27 iseqf1o.h . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐻𝑥) ∈ 𝑆)
28 simpr 109 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
29 fveq2 5387 . . . . . . . 8 (𝑏 = (𝐹𝑥) → (𝐺𝑏) = (𝐺‘(𝐹𝑥)))
3029eleq1d 2184 . . . . . . 7 (𝑏 = (𝐹𝑥) → ((𝐺𝑏) ∈ 𝑆 ↔ (𝐺‘(𝐹𝑥)) ∈ 𝑆))
31 fveq2 5387 . . . . . . . . . . 11 (𝑥 = 𝑏 → (𝐺𝑥) = (𝐺𝑏))
3231eleq1d 2184 . . . . . . . . . 10 (𝑥 = 𝑏 → ((𝐺𝑥) ∈ 𝑆 ↔ (𝐺𝑏) ∈ 𝑆))
3332cbvralv 2629 . . . . . . . . 9 (∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆 ↔ ∀𝑏 ∈ (ℤ𝑀)(𝐺𝑏) ∈ 𝑆)
349, 33sylib 121 . . . . . . . 8 (𝜑 → ∀𝑏 ∈ (ℤ𝑀)(𝐺𝑏) ∈ 𝑆)
3534ad2antrr 477 . . . . . . 7 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → ∀𝑏 ∈ (ℤ𝑀)(𝐺𝑏) ∈ 𝑆)
3613ad2antrr 477 . . . . . . . . 9 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝐹:(𝑀...𝑁)⟶(𝑀...𝑁))
37 eluzel2 9283 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
381, 37syl 14 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
3938ad2antrr 477 . . . . . . . . . 10 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑀 ∈ ℤ)
40 eluzelz 9287 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
411, 40syl 14 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
4241ad2antrr 477 . . . . . . . . . 10 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑁 ∈ ℤ)
43 eluzelz 9287 . . . . . . . . . . 11 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
4443ad2antlr 478 . . . . . . . . . 10 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥 ∈ ℤ)
45 eluzle 9290 . . . . . . . . . . 11 (𝑥 ∈ (ℤ𝑀) → 𝑀𝑥)
4645ad2antlr 478 . . . . . . . . . 10 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑀𝑥)
47 simpr 109 . . . . . . . . . 10 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥𝑁)
48 elfz4 9750 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥𝑁)) → 𝑥 ∈ (𝑀...𝑁))
4939, 42, 44, 46, 47, 48syl32anc 1207 . . . . . . . . 9 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥 ∈ (𝑀...𝑁))
5036, 49ffvelrnd 5522 . . . . . . . 8 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝐹𝑥) ∈ (𝑀...𝑁))
51 elfzuz 9753 . . . . . . . 8 ((𝐹𝑥) ∈ (𝑀...𝑁) → (𝐹𝑥) ∈ (ℤ𝑀))
5250, 51syl 14 . . . . . . 7 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝐹𝑥) ∈ (ℤ𝑀))
5330, 35, 52rspcdva 2766 . . . . . 6 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝐺‘(𝐹𝑥)) ∈ 𝑆)
54 fveq2 5387 . . . . . . . . 9 (𝑥 = 𝑀 → (𝐺𝑥) = (𝐺𝑀))
5554eleq1d 2184 . . . . . . . 8 (𝑥 = 𝑀 → ((𝐺𝑥) ∈ 𝑆 ↔ (𝐺𝑀) ∈ 𝑆))
56 uzid 9292 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
5738, 56syl 14 . . . . . . . 8 (𝜑𝑀 ∈ (ℤ𝑀))
5855, 9, 57rspcdva 2766 . . . . . . 7 (𝜑 → (𝐺𝑀) ∈ 𝑆)
5958ad2antrr 477 . . . . . 6 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → (𝐺𝑀) ∈ 𝑆)
6041adantr 272 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
61 zdcle 9081 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑥𝑁)
6243, 60, 61syl2an2 566 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → DECID 𝑥𝑁)
6353, 59, 62ifcldadc 3469 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)) ∈ 𝑆)
64 breq1 3900 . . . . . . 7 (𝑎 = 𝑥 → (𝑎𝑁𝑥𝑁))
65 2fveq3 5392 . . . . . . 7 (𝑎 = 𝑥 → (𝐺‘(𝐹𝑎)) = (𝐺‘(𝐹𝑥)))
6664, 65ifbieq1d 3462 . . . . . 6 (𝑎 = 𝑥 → if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀)) = if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))
6766, 22fvmptg 5463 . . . . 5 ((𝑥 ∈ (ℤ𝑀) ∧ if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)) ∈ 𝑆) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀)))‘𝑥) = if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))
6828, 63, 67syl2anc 406 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀)))‘𝑥) = if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))
6968, 63eqeltrd 2192 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀)))‘𝑥) ∈ 𝑆)
70 iseqf1o.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
711, 26, 27, 69, 70seq3fveq 10195 . 2 (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀))))‘𝑁))
72 iseqf1o.2 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
73 iseqf1o.3 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
7466cbvmptv 3992 . . 3 (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))
7570, 72, 73, 1, 11, 8, 74seq3f1oleml 10227 . 2 (𝜑 → (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
7671, 75eqtrd 2148 1 (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  DECID wdc 802  w3a 945   = wceq 1314  wcel 1463  wral 2391  ifcif 3442   class class class wbr 3897  cmpt 3957  wf 5087  1-1-ontowf1o 5090  cfv 5091  (class class class)co 5740  cle 7765  cz 9008  cuz 9278  ...cfz 9741  seqcseq 10169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-addass 7686  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-1o 6279  df-er 6395  df-en 6601  df-fin 6603  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-inn 8681  df-n0 8932  df-z 9009  df-uz 9279  df-fz 9742  df-fzo 9871  df-seqfrec 10170
This theorem is referenced by:  summodclem3  11100
  Copyright terms: Public domain W3C validator