ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3f1o GIF version

Theorem seq3f1o 10439
Description: Rearrange a sum via an arbitrary bijection on (𝑀...𝑁). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Jim Kingdon, 3-Nov-2022.)
Hypotheses
Ref Expression
iseqf1o.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqf1o.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
iseqf1o.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
iseqf1o.4 (𝜑𝑁 ∈ (ℤ𝑀))
iseqf1o.6 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1o.7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqf1o.h ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐻𝑥) ∈ 𝑆)
iseqf1o.8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = (𝐺‘(𝐹𝑘)))
Assertion
Ref Expression
seq3f1o (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑥,𝑀,𝑦,𝑧   𝑘,𝑀   𝑥,𝑁,𝑦,𝑧   𝑘,𝑁   𝑥,𝐺,𝑦,𝑧   𝑘,𝐺   𝑥,𝐹,𝑦,𝑧   𝑘,𝐹   𝑥,𝐻,𝑦,𝑘   𝑥,𝑆,𝑦,𝑧   𝑆,𝑘   𝑥, + ,𝑦,𝑧   + ,𝑘   𝜑,𝑥,𝑦,𝑧   𝜑,𝑘,𝑥,𝑦
Allowed substitution hint:   𝐻(𝑧)

Proof of Theorem seq3f1o
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqf1o.4 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 elfzle2 9963 . . . . . 6 (𝑘 ∈ (𝑀...𝑁) → 𝑘𝑁)
32iftrued 3527 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → if(𝑘𝑁, (𝐺‘(𝐹𝑘)), (𝐺𝑀)) = (𝐺‘(𝐹𝑘)))
43adantl 275 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → if(𝑘𝑁, (𝐺‘(𝐹𝑘)), (𝐺𝑀)) = (𝐺‘(𝐹𝑘)))
5 elfzuz 9956 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
6 fveq2 5486 . . . . . . . 8 (𝑥 = (𝐹𝑘) → (𝐺𝑥) = (𝐺‘(𝐹𝑘)))
76eleq1d 2235 . . . . . . 7 (𝑥 = (𝐹𝑘) → ((𝐺𝑥) ∈ 𝑆 ↔ (𝐺‘(𝐹𝑘)) ∈ 𝑆))
8 iseqf1o.7 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
98ralrimiva 2539 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
109adantr 274 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
11 iseqf1o.6 . . . . . . . . . 10 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
12 f1of 5432 . . . . . . . . . 10 (𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐹:(𝑀...𝑁)⟶(𝑀...𝑁))
1311, 12syl 14 . . . . . . . . 9 (𝜑𝐹:(𝑀...𝑁)⟶(𝑀...𝑁))
1413ffvelrnda 5620 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ (𝑀...𝑁))
15 elfzuz 9956 . . . . . . . 8 ((𝐹𝑘) ∈ (𝑀...𝑁) → (𝐹𝑘) ∈ (ℤ𝑀))
1614, 15syl 14 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ (ℤ𝑀))
177, 10, 16rspcdva 2835 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺‘(𝐹𝑘)) ∈ 𝑆)
184, 17eqeltrd 2243 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → if(𝑘𝑁, (𝐺‘(𝐹𝑘)), (𝐺𝑀)) ∈ 𝑆)
19 breq1 3985 . . . . . . 7 (𝑎 = 𝑘 → (𝑎𝑁𝑘𝑁))
20 2fveq3 5491 . . . . . . 7 (𝑎 = 𝑘 → (𝐺‘(𝐹𝑎)) = (𝐺‘(𝐹𝑘)))
2119, 20ifbieq1d 3542 . . . . . 6 (𝑎 = 𝑘 → if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀)) = if(𝑘𝑁, (𝐺‘(𝐹𝑘)), (𝐺𝑀)))
22 eqid 2165 . . . . . 6 (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀))) = (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀)))
2321, 22fvmptg 5562 . . . . 5 ((𝑘 ∈ (ℤ𝑀) ∧ if(𝑘𝑁, (𝐺‘(𝐹𝑘)), (𝐺𝑀)) ∈ 𝑆) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀)))‘𝑘) = if(𝑘𝑁, (𝐺‘(𝐹𝑘)), (𝐺𝑀)))
245, 18, 23syl2an2 584 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀)))‘𝑘) = if(𝑘𝑁, (𝐺‘(𝐹𝑘)), (𝐺𝑀)))
25 iseqf1o.8 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = (𝐺‘(𝐹𝑘)))
264, 24, 253eqtr4rd 2209 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀)))‘𝑘))
27 iseqf1o.h . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐻𝑥) ∈ 𝑆)
28 simpr 109 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
29 fveq2 5486 . . . . . . . 8 (𝑏 = (𝐹𝑥) → (𝐺𝑏) = (𝐺‘(𝐹𝑥)))
3029eleq1d 2235 . . . . . . 7 (𝑏 = (𝐹𝑥) → ((𝐺𝑏) ∈ 𝑆 ↔ (𝐺‘(𝐹𝑥)) ∈ 𝑆))
31 fveq2 5486 . . . . . . . . . . 11 (𝑥 = 𝑏 → (𝐺𝑥) = (𝐺𝑏))
3231eleq1d 2235 . . . . . . . . . 10 (𝑥 = 𝑏 → ((𝐺𝑥) ∈ 𝑆 ↔ (𝐺𝑏) ∈ 𝑆))
3332cbvralv 2692 . . . . . . . . 9 (∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆 ↔ ∀𝑏 ∈ (ℤ𝑀)(𝐺𝑏) ∈ 𝑆)
349, 33sylib 121 . . . . . . . 8 (𝜑 → ∀𝑏 ∈ (ℤ𝑀)(𝐺𝑏) ∈ 𝑆)
3534ad2antrr 480 . . . . . . 7 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → ∀𝑏 ∈ (ℤ𝑀)(𝐺𝑏) ∈ 𝑆)
3613ad2antrr 480 . . . . . . . . 9 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝐹:(𝑀...𝑁)⟶(𝑀...𝑁))
37 eluzel2 9471 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
381, 37syl 14 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
3938ad2antrr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑀 ∈ ℤ)
40 eluzelz 9475 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
411, 40syl 14 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
4241ad2antrr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑁 ∈ ℤ)
43 eluzelz 9475 . . . . . . . . . . 11 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
4443ad2antlr 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥 ∈ ℤ)
45 eluzle 9478 . . . . . . . . . . 11 (𝑥 ∈ (ℤ𝑀) → 𝑀𝑥)
4645ad2antlr 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑀𝑥)
47 simpr 109 . . . . . . . . . 10 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥𝑁)
48 elfz4 9953 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥𝑁)) → 𝑥 ∈ (𝑀...𝑁))
4939, 42, 44, 46, 47, 48syl32anc 1236 . . . . . . . . 9 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥 ∈ (𝑀...𝑁))
5036, 49ffvelrnd 5621 . . . . . . . 8 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝐹𝑥) ∈ (𝑀...𝑁))
51 elfzuz 9956 . . . . . . . 8 ((𝐹𝑥) ∈ (𝑀...𝑁) → (𝐹𝑥) ∈ (ℤ𝑀))
5250, 51syl 14 . . . . . . 7 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝐹𝑥) ∈ (ℤ𝑀))
5330, 35, 52rspcdva 2835 . . . . . 6 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝐺‘(𝐹𝑥)) ∈ 𝑆)
54 fveq2 5486 . . . . . . . . 9 (𝑥 = 𝑀 → (𝐺𝑥) = (𝐺𝑀))
5554eleq1d 2235 . . . . . . . 8 (𝑥 = 𝑀 → ((𝐺𝑥) ∈ 𝑆 ↔ (𝐺𝑀) ∈ 𝑆))
56 uzid 9480 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
5738, 56syl 14 . . . . . . . 8 (𝜑𝑀 ∈ (ℤ𝑀))
5855, 9, 57rspcdva 2835 . . . . . . 7 (𝜑 → (𝐺𝑀) ∈ 𝑆)
5958ad2antrr 480 . . . . . 6 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → (𝐺𝑀) ∈ 𝑆)
6041adantr 274 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
61 zdcle 9267 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑥𝑁)
6243, 60, 61syl2an2 584 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → DECID 𝑥𝑁)
6353, 59, 62ifcldadc 3549 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)) ∈ 𝑆)
64 breq1 3985 . . . . . . 7 (𝑎 = 𝑥 → (𝑎𝑁𝑥𝑁))
65 2fveq3 5491 . . . . . . 7 (𝑎 = 𝑥 → (𝐺‘(𝐹𝑎)) = (𝐺‘(𝐹𝑥)))
6664, 65ifbieq1d 3542 . . . . . 6 (𝑎 = 𝑥 → if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀)) = if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))
6766, 22fvmptg 5562 . . . . 5 ((𝑥 ∈ (ℤ𝑀) ∧ if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)) ∈ 𝑆) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀)))‘𝑥) = if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))
6828, 63, 67syl2anc 409 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀)))‘𝑥) = if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))
6968, 63eqeltrd 2243 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀)))‘𝑥) ∈ 𝑆)
70 iseqf1o.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
711, 26, 27, 69, 70seq3fveq 10406 . 2 (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀))))‘𝑁))
72 iseqf1o.2 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
73 iseqf1o.3 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
7466cbvmptv 4078 . . 3 (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))
7570, 72, 73, 1, 11, 8, 74seq3f1oleml 10438 . 2 (𝜑 → (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝐹𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
7671, 75eqtrd 2198 1 (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  DECID wdc 824  w3a 968   = wceq 1343  wcel 2136  wral 2444  ifcif 3520   class class class wbr 3982  cmpt 4043  wf 5184  1-1-ontowf1o 5187  cfv 5188  (class class class)co 5842  cle 7934  cz 9191  cuz 9466  ...cfz 9944  seqcseq 10380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-1o 6384  df-er 6501  df-en 6707  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-fzo 10078  df-seqfrec 10381
This theorem is referenced by:  summodclem3  11321  prodmodclem3  11516
  Copyright terms: Public domain W3C validator