ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modifeq2int GIF version

Theorem modifeq2int 10335
Description: If a nonnegative integer is less than twice a positive integer, the nonnegative integer modulo the positive integer equals the nonnegative integer or the nonnegative integer minus the positive integer. (Contributed by Alexander van der Vekens, 21-May-2018.)
Assertion
Ref Expression
modifeq2int ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))

Proof of Theorem modifeq2int
StepHypRef Expression
1 simp1 992 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → 𝐴 ∈ ℕ0)
2 nn0z 9225 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
3 zq 9578 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
42, 3syl 14 . . . . . 6 (𝐴 ∈ ℕ0𝐴 ∈ ℚ)
51, 4syl 14 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → 𝐴 ∈ ℚ)
65adantr 274 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℚ)
7 nnq 9585 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℚ)
873ad2ant2 1014 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → 𝐵 ∈ ℚ)
98adantr 274 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℚ)
101nn0ge0d 9184 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → 0 ≤ 𝐴)
1110adantr 274 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ 𝐴 < 𝐵) → 0 ≤ 𝐴)
12 simpr 109 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
13 modqid 10298 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴 mod 𝐵) = 𝐴)
146, 9, 11, 12, 13syl22anc 1234 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ 𝐴 < 𝐵) → (𝐴 mod 𝐵) = 𝐴)
15 iftrue 3530 . . . . 5 (𝐴 < 𝐵 → if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)) = 𝐴)
1615eqcomd 2176 . . . 4 (𝐴 < 𝐵𝐴 = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
1716adantl 275 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ 𝐴 < 𝐵) → 𝐴 = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
1814, 17eqtrd 2203 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ 𝐴 < 𝐵) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
195adantr 274 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℚ)
208adantr 274 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℚ)
21 simp2 993 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → 𝐵 ∈ ℕ)
2221adantr 274 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℕ)
2322nngt0d 8915 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → 0 < 𝐵)
2421nnred 8884 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → 𝐵 ∈ ℝ)
251nn0red 9182 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → 𝐴 ∈ ℝ)
2624, 25lenltd 8030 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
2726biimpar 295 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → 𝐵𝐴)
28 simpl3 997 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → 𝐴 < (2 · 𝐵))
29 q2submod 10334 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴𝐵))
3019, 20, 23, 27, 28, 29syl32anc 1241 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴 mod 𝐵) = (𝐴𝐵))
31 iffalse 3533 . . . . 5 𝐴 < 𝐵 → if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)) = (𝐴𝐵))
3231adantl 275 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)) = (𝐴𝐵))
3332eqcomd 2176 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
3430, 33eqtrd 2203 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
351, 2syl 14 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → 𝐴 ∈ ℤ)
3621nnzd 9326 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → 𝐵 ∈ ℤ)
37 zdclt 9282 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 < 𝐵)
38 exmiddc 831 . . . 4 (DECID 𝐴 < 𝐵 → (𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵))
3937, 38syl 14 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵))
4035, 36, 39syl2anc 409 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵))
4118, 34, 40mpjaodan 793 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 703  DECID wdc 829  w3a 973   = wceq 1348  wcel 2141  ifcif 3525   class class class wbr 3987  (class class class)co 5851  0cc0 7767   · cmul 7772   < clt 7947  cle 7948  cmin 8083  cn 8871  2c2 8922  0cn0 9128  cz 9205  cq 9571   mod cmo 10271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-mulrcl 7866  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-precex 7877  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883  ax-pre-mulgt0 7884  ax-pre-mulext 7885  ax-arch 7886
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-po 4279  df-iso 4280  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-reap 8487  df-ap 8494  df-div 8583  df-inn 8872  df-2 8930  df-n0 9129  df-z 9206  df-q 9572  df-rp 9604  df-fl 10219  df-mod 10272
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator