ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modifeq2int GIF version

Theorem modifeq2int 10457
Description: If a nonnegative integer is less than twice a positive integer, the nonnegative integer modulo the positive integer equals the nonnegative integer or the nonnegative integer minus the positive integer. (Contributed by Alexander van der Vekens, 21-May-2018.)
Assertion
Ref Expression
modifeq2int ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))

Proof of Theorem modifeq2int
StepHypRef Expression
1 simp1 999 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → 𝐴 ∈ ℕ0)
2 nn0z 9337 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
3 zq 9691 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
42, 3syl 14 . . . . . 6 (𝐴 ∈ ℕ0𝐴 ∈ ℚ)
51, 4syl 14 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → 𝐴 ∈ ℚ)
65adantr 276 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℚ)
7 nnq 9698 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℚ)
873ad2ant2 1021 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → 𝐵 ∈ ℚ)
98adantr 276 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℚ)
101nn0ge0d 9296 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → 0 ≤ 𝐴)
1110adantr 276 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ 𝐴 < 𝐵) → 0 ≤ 𝐴)
12 simpr 110 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
13 modqid 10420 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴 mod 𝐵) = 𝐴)
146, 9, 11, 12, 13syl22anc 1250 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ 𝐴 < 𝐵) → (𝐴 mod 𝐵) = 𝐴)
15 iftrue 3562 . . . . 5 (𝐴 < 𝐵 → if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)) = 𝐴)
1615eqcomd 2199 . . . 4 (𝐴 < 𝐵𝐴 = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
1716adantl 277 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ 𝐴 < 𝐵) → 𝐴 = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
1814, 17eqtrd 2226 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ 𝐴 < 𝐵) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
195adantr 276 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℚ)
208adantr 276 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℚ)
21 simp2 1000 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → 𝐵 ∈ ℕ)
2221adantr 276 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℕ)
2322nngt0d 9026 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → 0 < 𝐵)
2421nnred 8995 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → 𝐵 ∈ ℝ)
251nn0red 9294 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → 𝐴 ∈ ℝ)
2624, 25lenltd 8137 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
2726biimpar 297 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → 𝐵𝐴)
28 simpl3 1004 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → 𝐴 < (2 · 𝐵))
29 q2submod 10456 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴𝐵))
3019, 20, 23, 27, 28, 29syl32anc 1257 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴 mod 𝐵) = (𝐴𝐵))
31 iffalse 3565 . . . . 5 𝐴 < 𝐵 → if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)) = (𝐴𝐵))
3231adantl 277 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)) = (𝐴𝐵))
3332eqcomd 2199 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
3430, 33eqtrd 2226 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
351, 2syl 14 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → 𝐴 ∈ ℤ)
3621nnzd 9438 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → 𝐵 ∈ ℤ)
37 zdclt 9394 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 < 𝐵)
38 exmiddc 837 . . . 4 (DECID 𝐴 < 𝐵 → (𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵))
3937, 38syl 14 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵))
4035, 36, 39syl2anc 411 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵))
4118, 34, 40mpjaodan 799 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2164  ifcif 3557   class class class wbr 4029  (class class class)co 5918  0cc0 7872   · cmul 7877   < clt 8054  cle 8055  cmin 8190  cn 8982  2c2 9033  0cn0 9240  cz 9317  cq 9684   mod cmo 10393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-q 9685  df-rp 9720  df-fl 10339  df-mod 10394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator