![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ioom | GIF version |
Description: An open interval of extended reals is inhabited iff the lower argument is less than the upper argument. (Contributed by Jim Kingdon, 27-Nov-2021.) |
Ref | Expression |
---|---|
ioom | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐴 < 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioo3g 9476 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | |
2 | 1 | biimpi 119 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
3 | 2 | simpld 111 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ*)) |
4 | 3 | simp1d 958 | . . . . 5 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 ∈ ℝ*) |
5 | 3 | simp3d 960 | . . . . 5 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ*) |
6 | 3 | simp2d 959 | . . . . 5 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝐵 ∈ ℝ*) |
7 | 2 | simprd 113 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
8 | 7 | simpld 111 | . . . . 5 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑥) |
9 | 7 | simprd 113 | . . . . 5 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 < 𝐵) |
10 | 4, 5, 6, 8, 9 | xrlttrd 9375 | . . . 4 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐵) |
11 | 10 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐵)) |
12 | 11 | exlimdv 1754 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐵)) |
13 | qbtwnxr 9818 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | |
14 | df-rex 2376 | . . . . 5 ⊢ (∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ↔ ∃𝑥(𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | |
15 | 13, 14 | sylib 121 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑥(𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
16 | simpl1 949 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) → 𝐴 ∈ ℝ*) | |
17 | simpl2 950 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) → 𝐵 ∈ ℝ*) | |
18 | qre 9209 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ) | |
19 | 18 | ad2antrl 475 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) → 𝑥 ∈ ℝ) |
20 | 19 | rexrd 7634 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) → 𝑥 ∈ ℝ*) |
21 | simprrl 507 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) → 𝐴 < 𝑥) | |
22 | simprrr 508 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) → 𝑥 < 𝐵) | |
23 | 1 | biimpri 132 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝑥 ∈ (𝐴(,)𝐵)) |
24 | 16, 17, 20, 21, 22, 23 | syl32anc 1189 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) → 𝑥 ∈ (𝐴(,)𝐵)) |
25 | 24 | ex 114 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))) |
26 | 25 | eximdv 1815 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → (∃𝑥(𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → ∃𝑥 𝑥 ∈ (𝐴(,)𝐵))) |
27 | 15, 26 | mpd 13 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑥 𝑥 ∈ (𝐴(,)𝐵)) |
28 | 27 | 3expia 1148 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 𝑥 ∈ (𝐴(,)𝐵))) |
29 | 12, 28 | impbid 128 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐴 < 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 927 ∃wex 1433 ∈ wcel 1445 ∃wrex 2371 class class class wbr 3867 (class class class)co 5690 ℝcr 7446 ℝ*cxr 7618 < clt 7619 ℚcq 9203 (,)cioo 9454 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-mulrcl 7541 ax-addcom 7542 ax-mulcom 7543 ax-addass 7544 ax-mulass 7545 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-1rid 7549 ax-0id 7550 ax-rnegex 7551 ax-precex 7552 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-apti 7557 ax-pre-ltadd 7558 ax-pre-mulgt0 7559 ax-pre-mulext 7560 ax-arch 7561 |
This theorem depends on definitions: df-bi 116 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rmo 2378 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-po 4147 df-iso 4148 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-1st 5949 df-2nd 5950 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-sub 7752 df-neg 7753 df-reap 8149 df-ap 8156 df-div 8237 df-inn 8521 df-2 8579 df-n0 8772 df-z 8849 df-uz 9119 df-q 9204 df-rp 9234 df-ioo 9458 |
This theorem is referenced by: tgioo 12320 |
Copyright terms: Public domain | W3C validator |