![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ioom | GIF version |
Description: An open interval of extended reals is inhabited iff the lower argument is less than the upper argument. (Contributed by Jim Kingdon, 27-Nov-2021.) |
Ref | Expression |
---|---|
ioom | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐴 < 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioo3g 9979 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | |
2 | 1 | biimpi 120 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
3 | 2 | simpld 112 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ*)) |
4 | 3 | simp1d 1011 | . . . . 5 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 ∈ ℝ*) |
5 | 3 | simp3d 1013 | . . . . 5 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ*) |
6 | 3 | simp2d 1012 | . . . . 5 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝐵 ∈ ℝ*) |
7 | 2 | simprd 114 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
8 | 7 | simpld 112 | . . . . 5 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑥) |
9 | 7 | simprd 114 | . . . . 5 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 < 𝐵) |
10 | 4, 5, 6, 8, 9 | xrlttrd 9878 | . . . 4 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐵) |
11 | 10 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐵)) |
12 | 11 | exlimdv 1830 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐵)) |
13 | qbtwnxr 10329 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | |
14 | df-rex 2478 | . . . . 5 ⊢ (∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ↔ ∃𝑥(𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | |
15 | 13, 14 | sylib 122 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑥(𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
16 | simpl1 1002 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) → 𝐴 ∈ ℝ*) | |
17 | simpl2 1003 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) → 𝐵 ∈ ℝ*) | |
18 | qre 9693 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ) | |
19 | 18 | ad2antrl 490 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) → 𝑥 ∈ ℝ) |
20 | 19 | rexrd 8071 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) → 𝑥 ∈ ℝ*) |
21 | simprrl 539 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) → 𝐴 < 𝑥) | |
22 | simprrr 540 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) → 𝑥 < 𝐵) | |
23 | 1 | biimpri 133 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝑥 ∈ (𝐴(,)𝐵)) |
24 | 16, 17, 20, 21, 22, 23 | syl32anc 1257 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) → 𝑥 ∈ (𝐴(,)𝐵)) |
25 | 24 | ex 115 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))) |
26 | 25 | eximdv 1891 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → (∃𝑥(𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → ∃𝑥 𝑥 ∈ (𝐴(,)𝐵))) |
27 | 15, 26 | mpd 13 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑥 𝑥 ∈ (𝐴(,)𝐵)) |
28 | 27 | 3expia 1207 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 𝑥 ∈ (𝐴(,)𝐵))) |
29 | 12, 28 | impbid 129 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐴 < 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 ∃wex 1503 ∈ wcel 2164 ∃wrex 2473 class class class wbr 4030 (class class class)co 5919 ℝcr 7873 ℝ*cxr 8055 < clt 8056 ℚcq 9687 (,)cioo 9957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-ioo 9961 |
This theorem is referenced by: tgioo 14733 |
Copyright terms: Public domain | W3C validator |