ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutr GIF version

Theorem bezoutr 12169
Description: Partial converse to bezout 12148. Existence of a linear combination does not set the GCD, but it does upper bound it. (Contributed by Stefan O'Rear, 23-Sep-2014.)
Assertion
Ref Expression
bezoutr (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑋) + (𝐵 · 𝑌)))

Proof of Theorem bezoutr
StepHypRef Expression
1 gcdcl 12103 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
21nn0zd 9437 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ)
32adantr 276 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∈ ℤ)
4 simpll 527 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → 𝐴 ∈ ℤ)
5 simprl 529 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → 𝑋 ∈ ℤ)
64, 5zmulcld 9445 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 · 𝑋) ∈ ℤ)
7 simplr 528 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → 𝐵 ∈ ℤ)
8 simprr 531 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → 𝑌 ∈ ℤ)
97, 8zmulcld 9445 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐵 · 𝑌) ∈ ℤ)
10 gcddvds 12100 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
1110adantr 276 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
1211simpld 112 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∥ 𝐴)
13 dvdsmultr1 11974 . . . 4 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 → (𝐴 gcd 𝐵) ∥ (𝐴 · 𝑋)))
1413imp 124 . . 3 ((((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑋 ∈ ℤ) ∧ (𝐴 gcd 𝐵) ∥ 𝐴) → (𝐴 gcd 𝐵) ∥ (𝐴 · 𝑋))
153, 4, 5, 12, 14syl31anc 1252 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∥ (𝐴 · 𝑋))
1611simprd 114 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∥ 𝐵)
17 dvdsmultr1 11974 . . . 4 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 → (𝐴 gcd 𝐵) ∥ (𝐵 · 𝑌)))
1817imp 124 . . 3 ((((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → (𝐴 gcd 𝐵) ∥ (𝐵 · 𝑌))
193, 7, 8, 16, 18syl31anc 1252 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∥ (𝐵 · 𝑌))
20 dvds2add 11968 . . 3 (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 · 𝑋) ∈ ℤ ∧ (𝐵 · 𝑌) ∈ ℤ) → (((𝐴 gcd 𝐵) ∥ (𝐴 · 𝑋) ∧ (𝐴 gcd 𝐵) ∥ (𝐵 · 𝑌)) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑋) + (𝐵 · 𝑌))))
2120imp 124 . 2 ((((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 · 𝑋) ∈ ℤ ∧ (𝐵 · 𝑌) ∈ ℤ) ∧ ((𝐴 gcd 𝐵) ∥ (𝐴 · 𝑋) ∧ (𝐴 gcd 𝐵) ∥ (𝐵 · 𝑌))) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑋) + (𝐵 · 𝑌)))
223, 6, 9, 15, 19, 21syl32anc 1257 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑋) + (𝐵 · 𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wcel 2164   class class class wbr 4029  (class class class)co 5918   + caddc 7875   · cmul 7877  cz 9317  cdvds 11930   gcd cgcd 12079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080
This theorem is referenced by:  bezoutr1  12170
  Copyright terms: Public domain W3C validator