ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modaddmodup GIF version

Theorem modaddmodup 10343
Description: The sum of an integer modulo a positive integer and another integer minus the positive integer equals the sum of the two integers modulo the positive integer if the other integer is in the upper part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
Assertion
Ref Expression
modaddmodup ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀)))

Proof of Theorem modaddmodup
StepHypRef Expression
1 elfzoelz 10103 . . . . . . 7 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → 𝐵 ∈ ℤ)
21adantr 274 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝐵 ∈ ℤ)
3 zmodcl 10300 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) ∈ ℕ0)
43adantl 275 . . . . . . 7 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐴 mod 𝑀) ∈ ℕ0)
54nn0zd 9332 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐴 mod 𝑀) ∈ ℤ)
62, 5zaddcld 9338 . . . . 5 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐵 + (𝐴 mod 𝑀)) ∈ ℤ)
7 zq 9585 . . . . 5 ((𝐵 + (𝐴 mod 𝑀)) ∈ ℤ → (𝐵 + (𝐴 mod 𝑀)) ∈ ℚ)
86, 7syl 14 . . . 4 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐵 + (𝐴 mod 𝑀)) ∈ ℚ)
9 simprr 527 . . . . 5 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝑀 ∈ ℕ)
10 nnq 9592 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℚ)
119, 10syl 14 . . . 4 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝑀 ∈ ℚ)
129nngt0d 8922 . . . 4 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 0 < 𝑀)
13 elfzole1 10111 . . . . . 6 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → (𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵)
1413adantr 274 . . . . 5 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵)
159nnred 8891 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝑀 ∈ ℝ)
163nn0red 9189 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) ∈ ℝ)
1716adantl 275 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐴 mod 𝑀) ∈ ℝ)
181zred 9334 . . . . . . 7 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → 𝐵 ∈ ℝ)
1918adantr 274 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝐵 ∈ ℝ)
2015, 17, 19lesubaddd 8461 . . . . 5 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → ((𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
2114, 20mpbid 146 . . . 4 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀)))
22 elfzolt2 10112 . . . . . . 7 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → 𝐵 < 𝑀)
2322adantr 274 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝐵 < 𝑀)
24 zq 9585 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
2524ad2antrl 487 . . . . . . 7 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝐴 ∈ ℚ)
26 modqlt 10289 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝐴 mod 𝑀) < 𝑀)
2725, 11, 12, 26syl3anc 1233 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐴 mod 𝑀) < 𝑀)
2819, 17, 15, 15, 23, 27lt2addd 8486 . . . . 5 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐵 + (𝐴 mod 𝑀)) < (𝑀 + 𝑀))
299nncnd 8892 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝑀 ∈ ℂ)
30292timesd 9120 . . . . 5 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (2 · 𝑀) = (𝑀 + 𝑀))
3128, 30breqtrrd 4017 . . . 4 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))
32 q2submod 10341 . . . 4 ((((𝐵 + (𝐴 mod 𝑀)) ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝑀 ≤ (𝐵 + (𝐴 mod 𝑀)) ∧ (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + (𝐴 mod 𝑀)) − 𝑀))
338, 11, 12, 21, 31, 32syl32anc 1241 . . 3 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + (𝐴 mod 𝑀)) − 𝑀))
34 zq 9585 . . . . 5 (𝐵 ∈ ℤ → 𝐵 ∈ ℚ)
352, 34syl 14 . . . 4 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝐵 ∈ ℚ)
36 modqadd2mod 10330 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
3725, 35, 11, 12, 36syl22anc 1234 . . 3 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
3833, 37eqtr3d 2205 . 2 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
3938expcom 115 1 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141   class class class wbr 3989  (class class class)co 5853  cr 7773  0cc0 7774   + caddc 7777   · cmul 7779   < clt 7954  cle 7955  cmin 8090  cn 8878  2c2 8929  0cn0 9135  cz 9212  cq 9578  ..^cfzo 10098   mod cmo 10278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator