Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ipsscad GIF version

 Description: The set of scalars of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
Hypotheses
Ref Expression
ipspart.a 𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})
ipsstrd.b (𝜑𝐵𝑉)
ipsstrd.p (𝜑+𝑊)
ipsstrd.r (𝜑×𝑋)
ipsstrd.s (𝜑𝑆𝑌)
ipsstrd.x (𝜑·𝑄)
ipsstrd.i (𝜑𝐼𝑍)
Assertion
Ref Expression

StepHypRef Expression
1 scaslid 12161 . 2 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
2 ipspart.a . . 3 𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})
3 ipsstrd.b . . 3 (𝜑𝐵𝑉)
4 ipsstrd.p . . 3 (𝜑+𝑊)
5 ipsstrd.r . . 3 (𝜑×𝑋)
6 ipsstrd.s . . 3 (𝜑𝑆𝑌)
7 ipsstrd.x . . 3 (𝜑·𝑄)
8 ipsstrd.i . . 3 (𝜑𝐼𝑍)
92, 3, 4, 5, 6, 7, 8ipsstrd 12173 . 2 (𝜑𝐴 Struct ⟨1, 8⟩)
101simpri 112 . . . . 5 (Scalar‘ndx) ∈ ℕ
11 opexg 4160 . . . . 5 (((Scalar‘ndx) ∈ ℕ ∧ 𝑆𝑌) → ⟨(Scalar‘ndx), 𝑆⟩ ∈ V)
1210, 6, 11sylancr 411 . . . 4 (𝜑 → ⟨(Scalar‘ndx), 𝑆⟩ ∈ V)
13 tpid1g 3644 . . . 4 (⟨(Scalar‘ndx), 𝑆⟩ ∈ V → ⟨(Scalar‘ndx), 𝑆⟩ ∈ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})
14 elun2 3250 . . . 4 (⟨(Scalar‘ndx), 𝑆⟩ ∈ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩} → ⟨(Scalar‘ndx), 𝑆⟩ ∈ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩}))
1512, 13, 143syl 17 . . 3 (𝜑 → ⟨(Scalar‘ndx), 𝑆⟩ ∈ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩}))
1615, 2eleqtrrdi 2234 . 2 (𝜑 → ⟨(Scalar‘ndx), 𝑆⟩ ∈ 𝐴)
171, 9, 6, 16opelstrsl 12128 1 (𝜑𝑆 = (Scalar‘𝐴))
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1332   ∈ wcel 1481  Vcvv 2690   ∪ cun 3075  {ctp 3535  ⟨cop 3536  ‘cfv 5134  1c1 7672  ℕcn 8771  8c8 8828  ndxcnx 12029  Slot cslot 12031  Basecbs 12032  +gcplusg 12094  .rcmulr 12095  Scalarcsca 12097   ·𝑠 cvsca 12098  ·𝑖cip 12099 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4055  ax-pow 4107  ax-pr 4141  ax-un 4365  ax-setind 4462  ax-cnex 7762  ax-resscn 7763  ax-1cn 7764  ax-1re 7765  ax-icn 7766  ax-addcl 7767  ax-addrcl 7768  ax-mulcl 7769  ax-addcom 7771  ax-addass 7773  ax-distr 7775  ax-i2m1 7776  ax-0lt1 7777  ax-0id 7779  ax-rnegex 7780  ax-cnre 7782  ax-pre-ltirr 7783  ax-pre-ltwlin 7784  ax-pre-lttrn 7785  ax-pre-apti 7786  ax-pre-ltadd 7787 This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2692  df-sbc 2915  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-nul 3370  df-pw 3518  df-sn 3539  df-pr 3540  df-tp 3541  df-op 3542  df-uni 3746  df-int 3781  df-br 3939  df-opab 3999  df-mpt 4000  df-id 4225  df-xp 4556  df-rel 4557  df-cnv 4558  df-co 4559  df-dm 4560  df-rn 4561  df-res 4562  df-ima 4563  df-iota 5099  df-fun 5136  df-fn 5137  df-f 5138  df-fv 5142  df-riota 5741  df-ov 5788  df-oprab 5789  df-mpo 5790  df-pnf 7853  df-mnf 7854  df-xr 7855  df-ltxr 7856  df-le 7857  df-sub 7986  df-neg 7987  df-inn 8772  df-2 8830  df-3 8831  df-4 8832  df-5 8833  df-6 8834  df-7 8835  df-8 8836  df-n0 9029  df-z 9106  df-uz 9378  df-fz 9849  df-struct 12034  df-ndx 12035  df-slot 12036  df-base 12038  df-plusg 12107  df-mulr 12108  df-sca 12110  df-vsca 12111  df-ip 12112 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator