ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ipsscad GIF version

Theorem ipsscad 12637
Description: The set of scalars of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
Hypotheses
Ref Expression
ipspart.a 𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})
ipsstrd.b (𝜑𝐵𝑉)
ipsstrd.p (𝜑+𝑊)
ipsstrd.r (𝜑×𝑋)
ipsstrd.s (𝜑𝑆𝑌)
ipsstrd.x (𝜑·𝑄)
ipsstrd.i (𝜑𝐼𝑍)
Assertion
Ref Expression
ipsscad (𝜑𝑆 = (Scalar‘𝐴))

Proof of Theorem ipsscad
StepHypRef Expression
1 scaslid 12610 . 2 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
2 ipspart.a . . 3 𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})
3 ipsstrd.b . . 3 (𝜑𝐵𝑉)
4 ipsstrd.p . . 3 (𝜑+𝑊)
5 ipsstrd.r . . 3 (𝜑×𝑋)
6 ipsstrd.s . . 3 (𝜑𝑆𝑌)
7 ipsstrd.x . . 3 (𝜑·𝑄)
8 ipsstrd.i . . 3 (𝜑𝐼𝑍)
92, 3, 4, 5, 6, 7, 8ipsstrd 12633 . 2 (𝜑𝐴 Struct ⟨1, 8⟩)
101simpri 113 . . . . 5 (Scalar‘ndx) ∈ ℕ
11 opexg 4228 . . . . 5 (((Scalar‘ndx) ∈ ℕ ∧ 𝑆𝑌) → ⟨(Scalar‘ndx), 𝑆⟩ ∈ V)
1210, 6, 11sylancr 414 . . . 4 (𝜑 → ⟨(Scalar‘ndx), 𝑆⟩ ∈ V)
13 tpid1g 3704 . . . 4 (⟨(Scalar‘ndx), 𝑆⟩ ∈ V → ⟨(Scalar‘ndx), 𝑆⟩ ∈ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})
14 elun2 3303 . . . 4 (⟨(Scalar‘ndx), 𝑆⟩ ∈ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩} → ⟨(Scalar‘ndx), 𝑆⟩ ∈ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩}))
1512, 13, 143syl 17 . . 3 (𝜑 → ⟨(Scalar‘ndx), 𝑆⟩ ∈ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩}))
1615, 2eleqtrrdi 2271 . 2 (𝜑 → ⟨(Scalar‘ndx), 𝑆⟩ ∈ 𝐴)
171, 9, 6, 16opelstrsl 12572 1 (𝜑𝑆 = (Scalar‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  Vcvv 2737  cun 3127  {ctp 3594  cop 3595  cfv 5216  1c1 7811  cn 8918  8c8 8975  ndxcnx 12458  Slot cslot 12460  Basecbs 12461  +gcplusg 12535  .rcmulr 12536  Scalarcsca 12538   ·𝑠 cvsca 12539  ·𝑖cip 12540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-tp 3600  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-inn 8919  df-2 8977  df-3 8978  df-4 8979  df-5 8980  df-6 8981  df-7 8982  df-8 8983  df-n0 9176  df-z 9253  df-uz 9528  df-fz 10008  df-struct 12463  df-ndx 12464  df-slot 12465  df-base 12467  df-plusg 12548  df-mulr 12549  df-sca 12551  df-vsca 12552  df-ip 12553
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator