Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > topgrpbasd | GIF version |
Description: The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.) |
Ref | Expression |
---|---|
topgrpfn.w | ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} |
topgrpfnd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
topgrpfnd.p | ⊢ (𝜑 → + ∈ 𝑊) |
topgrpfnd.j | ⊢ (𝜑 → 𝐽 ∈ 𝑋) |
Ref | Expression |
---|---|
topgrpbasd | ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topgrpfn.w | . . 3 ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} | |
2 | topgrpfnd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
3 | topgrpfnd.p | . . 3 ⊢ (𝜑 → + ∈ 𝑊) | |
4 | topgrpfnd.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝑋) | |
5 | 1, 2, 3, 4 | topgrpstrd 12592 | . 2 ⊢ (𝜑 → 𝑊 Struct 〈1, 9〉) |
6 | basendxnn 12484 | . . . . 5 ⊢ (Base‘ndx) ∈ ℕ | |
7 | opexg 4222 | . . . . 5 ⊢ (((Base‘ndx) ∈ ℕ ∧ 𝐵 ∈ 𝑉) → 〈(Base‘ndx), 𝐵〉 ∈ V) | |
8 | 6, 2, 7 | sylancr 414 | . . . 4 ⊢ (𝜑 → 〈(Base‘ndx), 𝐵〉 ∈ V) |
9 | tpid1g 3701 | . . . 4 ⊢ (〈(Base‘ndx), 𝐵〉 ∈ V → 〈(Base‘ndx), 𝐵〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉}) | |
10 | 8, 9 | syl 14 | . . 3 ⊢ (𝜑 → 〈(Base‘ndx), 𝐵〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉}) |
11 | 10, 1 | eleqtrrdi 2269 | . 2 ⊢ (𝜑 → 〈(Base‘ndx), 𝐵〉 ∈ 𝑊) |
12 | 5, 2, 11 | opelstrbas 12528 | 1 ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 Vcvv 2735 {ctp 3591 〈cop 3592 ‘cfv 5208 1c1 7787 ℕcn 8892 9c9 8950 ndxcnx 12426 Basecbs 12429 +gcplusg 12493 TopSetcts 12499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-tp 3597 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-inn 8893 df-2 8951 df-3 8952 df-4 8953 df-5 8954 df-6 8955 df-7 8956 df-8 8957 df-9 8958 df-n0 9150 df-z 9227 df-uz 9502 df-fz 9980 df-struct 12431 df-ndx 12432 df-slot 12433 df-base 12435 df-plusg 12506 df-tset 12512 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |