ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topgrpbasd GIF version

Theorem topgrpbasd 12141
Description: The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
Hypotheses
Ref Expression
topgrpfn.w 𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}
topgrpfnd.b (𝜑𝐵𝑉)
topgrpfnd.p (𝜑+𝑊)
topgrpfnd.j (𝜑𝐽𝑋)
Assertion
Ref Expression
topgrpbasd (𝜑𝐵 = (Base‘𝑊))

Proof of Theorem topgrpbasd
StepHypRef Expression
1 topgrpfn.w . . 3 𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}
2 topgrpfnd.b . . 3 (𝜑𝐵𝑉)
3 topgrpfnd.p . . 3 (𝜑+𝑊)
4 topgrpfnd.j . . 3 (𝜑𝐽𝑋)
51, 2, 3, 4topgrpstrd 12140 . 2 (𝜑𝑊 Struct ⟨1, 9⟩)
6 basendxnn 12044 . . . . 5 (Base‘ndx) ∈ ℕ
7 opexg 4154 . . . . 5 (((Base‘ndx) ∈ ℕ ∧ 𝐵𝑉) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
86, 2, 7sylancr 411 . . . 4 (𝜑 → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
9 tpid1g 3639 . . . 4 (⟨(Base‘ndx), 𝐵⟩ ∈ V → ⟨(Base‘ndx), 𝐵⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
108, 9syl 14 . . 3 (𝜑 → ⟨(Base‘ndx), 𝐵⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
1110, 1eleqtrrdi 2234 . 2 (𝜑 → ⟨(Base‘ndx), 𝐵⟩ ∈ 𝑊)
125, 2, 11opelstrbas 12086 1 (𝜑𝐵 = (Base‘𝑊))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1332  wcel 1481  Vcvv 2687  {ctp 3530  cop 3531  cfv 5127  1c1 7641  cn 8740  9c9 8798  ndxcnx 11986  Basecbs 11989  +gcplusg 12051  TopSetcts 12057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4050  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-setind 4456  ax-cnex 7731  ax-resscn 7732  ax-1cn 7733  ax-1re 7734  ax-icn 7735  ax-addcl 7736  ax-addrcl 7737  ax-mulcl 7738  ax-addcom 7740  ax-addass 7742  ax-distr 7744  ax-i2m1 7745  ax-0lt1 7746  ax-0id 7748  ax-rnegex 7749  ax-cnre 7751  ax-pre-ltirr 7752  ax-pre-ltwlin 7753  ax-pre-lttrn 7754  ax-pre-apti 7755  ax-pre-ltadd 7756
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2689  df-sbc 2911  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-nul 3365  df-pw 3513  df-sn 3534  df-pr 3535  df-tp 3536  df-op 3537  df-uni 3741  df-int 3776  df-br 3934  df-opab 3994  df-mpt 3995  df-id 4219  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-rn 4554  df-res 4555  df-ima 4556  df-iota 5092  df-fun 5129  df-fn 5130  df-f 5131  df-fv 5135  df-riota 5734  df-ov 5781  df-oprab 5782  df-mpo 5783  df-pnf 7822  df-mnf 7823  df-xr 7824  df-ltxr 7825  df-le 7826  df-sub 7955  df-neg 7956  df-inn 8741  df-2 8799  df-3 8800  df-4 8801  df-5 8802  df-6 8803  df-7 8804  df-8 8805  df-9 8806  df-n0 8998  df-z 9075  df-uz 9347  df-fz 9818  df-struct 11991  df-ndx 11992  df-slot 11993  df-base 11995  df-plusg 12064  df-tset 12070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator