![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordelss | GIF version |
Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
Ref | Expression |
---|---|
ordelss | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 4203 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
2 | trss 3943 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
3 | 2 | imp 122 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
4 | 1, 3 | sylan 277 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1438 ⊆ wss 2999 Tr wtr 3934 Ord word 4187 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-v 2621 df-in 3005 df-ss 3012 df-uni 3652 df-tr 3935 df-iord 4191 |
This theorem is referenced by: ordelord 4206 onelss 4212 ordsuc 4377 smores3 6050 tfrlem1 6065 tfrlemisucaccv 6082 tfrlemiubacc 6087 tfr1onlemsucaccv 6098 tfr1onlemubacc 6103 tfrcllemsucaccv 6111 tfrcllemubacc 6116 nntri1 6249 nnsseleq 6254 fict 6574 infnfi 6601 isinfinf 6603 ordiso2 6718 hashinfuni 10173 |
Copyright terms: Public domain | W3C validator |