ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordelss GIF version

Theorem ordelss 4469
Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.)
Assertion
Ref Expression
ordelss ((Ord 𝐴𝐵𝐴) → 𝐵𝐴)

Proof of Theorem ordelss
StepHypRef Expression
1 ordtr 4468 . 2 (Ord 𝐴 → Tr 𝐴)
2 trss 4190 . . 3 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
32imp 124 . 2 ((Tr 𝐴𝐵𝐴) → 𝐵𝐴)
41, 3sylan 283 1 ((Ord 𝐴𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  wss 3197  Tr wtr 4181  Ord word 4452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-uni 3888  df-tr 4182  df-iord 4456
This theorem is referenced by:  ordelord  4471  onelss  4477  ordsuc  4654  smores3  6437  tfrlem1  6452  tfrlemisucaccv  6469  tfrlemiubacc  6474  tfr1onlemsucaccv  6485  tfr1onlemubacc  6490  tfrcllemsucaccv  6498  tfrcllemubacc  6503  nntri1  6640  nnsseleq  6645  fict  7026  infnfi  7053  isinfinf  7055  ordiso2  7198  hashinfuni  10994
  Copyright terms: Public domain W3C validator