ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordelss GIF version

Theorem ordelss 4381
Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.)
Assertion
Ref Expression
ordelss ((Ord 𝐴𝐵𝐴) → 𝐵𝐴)

Proof of Theorem ordelss
StepHypRef Expression
1 ordtr 4380 . 2 (Ord 𝐴 → Tr 𝐴)
2 trss 4112 . . 3 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
32imp 124 . 2 ((Tr 𝐴𝐵𝐴) → 𝐵𝐴)
41, 3sylan 283 1 ((Ord 𝐴𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148  wss 3131  Tr wtr 4103  Ord word 4364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-in 3137  df-ss 3144  df-uni 3812  df-tr 4104  df-iord 4368
This theorem is referenced by:  ordelord  4383  onelss  4389  ordsuc  4564  smores3  6297  tfrlem1  6312  tfrlemisucaccv  6329  tfrlemiubacc  6334  tfr1onlemsucaccv  6345  tfr1onlemubacc  6350  tfrcllemsucaccv  6358  tfrcllemubacc  6363  nntri1  6500  nnsseleq  6505  fict  6871  infnfi  6898  isinfinf  6900  ordiso2  7037  hashinfuni  10760
  Copyright terms: Public domain W3C validator