Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordelss | GIF version |
Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
Ref | Expression |
---|---|
ordelss | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 4363 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
2 | trss 4096 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
3 | 2 | imp 123 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
4 | 1, 3 | sylan 281 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 ⊆ wss 3121 Tr wtr 4087 Ord word 4347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-in 3127 df-ss 3134 df-uni 3797 df-tr 4088 df-iord 4351 |
This theorem is referenced by: ordelord 4366 onelss 4372 ordsuc 4547 smores3 6272 tfrlem1 6287 tfrlemisucaccv 6304 tfrlemiubacc 6309 tfr1onlemsucaccv 6320 tfr1onlemubacc 6325 tfrcllemsucaccv 6333 tfrcllemubacc 6338 nntri1 6475 nnsseleq 6480 fict 6846 infnfi 6873 isinfinf 6875 ordiso2 7012 hashinfuni 10711 |
Copyright terms: Public domain | W3C validator |