ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordelss GIF version

Theorem ordelss 4425
Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.)
Assertion
Ref Expression
ordelss ((Ord 𝐴𝐵𝐴) → 𝐵𝐴)

Proof of Theorem ordelss
StepHypRef Expression
1 ordtr 4424 . 2 (Ord 𝐴 → Tr 𝐴)
2 trss 4150 . . 3 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
32imp 124 . 2 ((Tr 𝐴𝐵𝐴) → 𝐵𝐴)
41, 3sylan 283 1 ((Ord 𝐴𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2175  wss 3165  Tr wtr 4141  Ord word 4408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-in 3171  df-ss 3178  df-uni 3850  df-tr 4142  df-iord 4412
This theorem is referenced by:  ordelord  4427  onelss  4433  ordsuc  4610  smores3  6378  tfrlem1  6393  tfrlemisucaccv  6410  tfrlemiubacc  6415  tfr1onlemsucaccv  6426  tfr1onlemubacc  6431  tfrcllemsucaccv  6439  tfrcllemubacc  6444  nntri1  6581  nnsseleq  6586  fict  6964  infnfi  6991  isinfinf  6993  ordiso2  7136  hashinfuni  10920
  Copyright terms: Public domain W3C validator