| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordelss | GIF version | ||
| Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
| Ref | Expression |
|---|---|
| ordelss | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 4468 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 2 | trss 4190 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
| 3 | 2 | imp 124 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| 4 | 1, 3 | sylan 283 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ⊆ wss 3197 Tr wtr 4181 Ord word 4452 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-in 3203 df-ss 3210 df-uni 3888 df-tr 4182 df-iord 4456 |
| This theorem is referenced by: ordelord 4471 onelss 4477 ordsuc 4654 smores3 6437 tfrlem1 6452 tfrlemisucaccv 6469 tfrlemiubacc 6474 tfr1onlemsucaccv 6485 tfr1onlemubacc 6490 tfrcllemsucaccv 6498 tfrcllemubacc 6503 nntri1 6640 nnsseleq 6645 fict 7026 infnfi 7053 isinfinf 7055 ordiso2 7198 hashinfuni 10994 |
| Copyright terms: Public domain | W3C validator |