| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ordelss | GIF version | ||
| Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) | 
| Ref | Expression | 
|---|---|
| ordelss | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ordtr 4413 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 2 | trss 4140 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
| 3 | 2 | imp 124 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) | 
| 4 | 1, 3 | sylan 283 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ⊆ wss 3157 Tr wtr 4131 Ord word 4397 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-in 3163 df-ss 3170 df-uni 3840 df-tr 4132 df-iord 4401 | 
| This theorem is referenced by: ordelord 4416 onelss 4422 ordsuc 4599 smores3 6351 tfrlem1 6366 tfrlemisucaccv 6383 tfrlemiubacc 6388 tfr1onlemsucaccv 6399 tfr1onlemubacc 6404 tfrcllemsucaccv 6412 tfrcllemubacc 6417 nntri1 6554 nnsseleq 6559 fict 6929 infnfi 6956 isinfinf 6958 ordiso2 7101 hashinfuni 10869 | 
| Copyright terms: Public domain | W3C validator |