ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordelss GIF version

Theorem ordelss 4424
Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.)
Assertion
Ref Expression
ordelss ((Ord 𝐴𝐵𝐴) → 𝐵𝐴)

Proof of Theorem ordelss
StepHypRef Expression
1 ordtr 4423 . 2 (Ord 𝐴 → Tr 𝐴)
2 trss 4150 . . 3 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
32imp 124 . 2 ((Tr 𝐴𝐵𝐴) → 𝐵𝐴)
41, 3sylan 283 1 ((Ord 𝐴𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2175  wss 3165  Tr wtr 4141  Ord word 4407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-in 3171  df-ss 3178  df-uni 3850  df-tr 4142  df-iord 4411
This theorem is referenced by:  ordelord  4426  onelss  4432  ordsuc  4609  smores3  6369  tfrlem1  6384  tfrlemisucaccv  6401  tfrlemiubacc  6406  tfr1onlemsucaccv  6417  tfr1onlemubacc  6422  tfrcllemsucaccv  6430  tfrcllemubacc  6435  nntri1  6572  nnsseleq  6577  fict  6947  infnfi  6974  isinfinf  6976  ordiso2  7119  hashinfuni  10903
  Copyright terms: Public domain W3C validator