| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordelss | GIF version | ||
| Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
| Ref | Expression |
|---|---|
| ordelss | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 4433 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 2 | trss 4159 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
| 3 | 2 | imp 124 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| 4 | 1, 3 | sylan 283 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 ⊆ wss 3170 Tr wtr 4150 Ord word 4417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-in 3176 df-ss 3183 df-uni 3857 df-tr 4151 df-iord 4421 |
| This theorem is referenced by: ordelord 4436 onelss 4442 ordsuc 4619 smores3 6392 tfrlem1 6407 tfrlemisucaccv 6424 tfrlemiubacc 6429 tfr1onlemsucaccv 6440 tfr1onlemubacc 6445 tfrcllemsucaccv 6453 tfrcllemubacc 6458 nntri1 6595 nnsseleq 6600 fict 6980 infnfi 7007 isinfinf 7009 ordiso2 7152 hashinfuni 10944 |
| Copyright terms: Public domain | W3C validator |