ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oprg GIF version

Theorem f1oprg 5243
Description: An unordered pair of ordered pairs with different elements is a one-to-one onto function. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
Assertion
Ref Expression
f1oprg (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → ((𝐴𝐶𝐵𝐷) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}:{𝐴, 𝐶}–1-1-onto→{𝐵, 𝐷}))

Proof of Theorem f1oprg
StepHypRef Expression
1 f1osng 5242 . . . . 5 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})
21ad2antrr 472 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})
3 f1osng 5242 . . . . 5 ((𝐶𝑋𝐷𝑌) → {⟨𝐶, 𝐷⟩}:{𝐶}–1-1-onto→{𝐷})
43ad2antlr 473 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → {⟨𝐶, 𝐷⟩}:{𝐶}–1-1-onto→{𝐷})
5 disjsn2 3479 . . . . 5 (𝐴𝐶 → ({𝐴} ∩ {𝐶}) = ∅)
65ad2antrl 474 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({𝐴} ∩ {𝐶}) = ∅)
7 disjsn2 3479 . . . . 5 (𝐵𝐷 → ({𝐵} ∩ {𝐷}) = ∅)
87ad2antll 475 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({𝐵} ∩ {𝐷}) = ∅)
9 f1oun 5221 . . . 4 ((({⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵} ∧ {⟨𝐶, 𝐷⟩}:{𝐶}–1-1-onto→{𝐷}) ∧ (({𝐴} ∩ {𝐶}) = ∅ ∧ ({𝐵} ∩ {𝐷}) = ∅)) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}):({𝐴} ∪ {𝐶})–1-1-onto→({𝐵} ∪ {𝐷}))
102, 4, 6, 8, 9syl22anc 1171 . . 3 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}):({𝐴} ∪ {𝐶})–1-1-onto→({𝐵} ∪ {𝐷}))
11 df-pr 3429 . . . . . 6 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
1211eqcomi 2087 . . . . 5 ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}
1312a1i 9 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
14 df-pr 3429 . . . . . 6 {𝐴, 𝐶} = ({𝐴} ∪ {𝐶})
1514eqcomi 2087 . . . . 5 ({𝐴} ∪ {𝐶}) = {𝐴, 𝐶}
1615a1i 9 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({𝐴} ∪ {𝐶}) = {𝐴, 𝐶})
17 df-pr 3429 . . . . . 6 {𝐵, 𝐷} = ({𝐵} ∪ {𝐷})
1817eqcomi 2087 . . . . 5 ({𝐵} ∪ {𝐷}) = {𝐵, 𝐷}
1918a1i 9 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({𝐵} ∪ {𝐷}) = {𝐵, 𝐷})
2013, 16, 19f1oeq123d 5198 . . 3 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → (({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}):({𝐴} ∪ {𝐶})–1-1-onto→({𝐵} ∪ {𝐷}) ↔ {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}:{𝐴, 𝐶}–1-1-onto→{𝐵, 𝐷}))
2110, 20mpbid 145 . 2 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}:{𝐴, 𝐶}–1-1-onto→{𝐵, 𝐷})
2221ex 113 1 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → ((𝐴𝐶𝐵𝐷) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}:{𝐴, 𝐶}–1-1-onto→{𝐵, 𝐷}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  wne 2249  cun 2982  cin 2983  c0 3269  {csn 3422  {cpr 3423  cop 3425  1-1-ontowf1o 4968
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-v 2614  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-br 3812  df-opab 3866  df-id 4084  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator