ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidundif GIF version

Theorem exmidundif 4236
Description: Excluded middle is equivalent to every subset having a complement. That is, the union of a subset and its relative complement being the whole set. Although special cases such as undifss 3528 and undifdcss 6981 are provable, the full statement is equivalent to excluded middle as shown here. (Contributed by Jim Kingdon, 18-Jun-2022.)
Assertion
Ref Expression
exmidundif (EXMID ↔ ∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦))
Distinct variable group:   𝑥,𝑦

Proof of Theorem exmidundif
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 undifss 3528 . . . . . . . 8 (𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) ⊆ 𝑦)
21biimpi 120 . . . . . . 7 (𝑥𝑦 → (𝑥 ∪ (𝑦𝑥)) ⊆ 𝑦)
32adantl 277 . . . . . 6 ((EXMID𝑥𝑦) → (𝑥 ∪ (𝑦𝑥)) ⊆ 𝑦)
4 elun1 3327 . . . . . . . . . . 11 (𝑧𝑥𝑧 ∈ (𝑥 ∪ (𝑦𝑥)))
54adantl 277 . . . . . . . . . 10 (((EXMID𝑧𝑦) ∧ 𝑧𝑥) → 𝑧 ∈ (𝑥 ∪ (𝑦𝑥)))
6 simplr 528 . . . . . . . . . . . 12 (((EXMID𝑧𝑦) ∧ ¬ 𝑧𝑥) → 𝑧𝑦)
7 simpr 110 . . . . . . . . . . . 12 (((EXMID𝑧𝑦) ∧ ¬ 𝑧𝑥) → ¬ 𝑧𝑥)
86, 7eldifd 3164 . . . . . . . . . . 11 (((EXMID𝑧𝑦) ∧ ¬ 𝑧𝑥) → 𝑧 ∈ (𝑦𝑥))
9 elun2 3328 . . . . . . . . . . 11 (𝑧 ∈ (𝑦𝑥) → 𝑧 ∈ (𝑥 ∪ (𝑦𝑥)))
108, 9syl 14 . . . . . . . . . 10 (((EXMID𝑧𝑦) ∧ ¬ 𝑧𝑥) → 𝑧 ∈ (𝑥 ∪ (𝑦𝑥)))
11 exmidexmid 4226 . . . . . . . . . . . 12 (EXMIDDECID 𝑧𝑥)
12 exmiddc 837 . . . . . . . . . . . 12 (DECID 𝑧𝑥 → (𝑧𝑥 ∨ ¬ 𝑧𝑥))
1311, 12syl 14 . . . . . . . . . . 11 (EXMID → (𝑧𝑥 ∨ ¬ 𝑧𝑥))
1413adantr 276 . . . . . . . . . 10 ((EXMID𝑧𝑦) → (𝑧𝑥 ∨ ¬ 𝑧𝑥))
155, 10, 14mpjaodan 799 . . . . . . . . 9 ((EXMID𝑧𝑦) → 𝑧 ∈ (𝑥 ∪ (𝑦𝑥)))
1615ex 115 . . . . . . . 8 (EXMID → (𝑧𝑦𝑧 ∈ (𝑥 ∪ (𝑦𝑥))))
1716ssrdv 3186 . . . . . . 7 (EXMID𝑦 ⊆ (𝑥 ∪ (𝑦𝑥)))
1817adantr 276 . . . . . 6 ((EXMID𝑥𝑦) → 𝑦 ⊆ (𝑥 ∪ (𝑦𝑥)))
193, 18eqssd 3197 . . . . 5 ((EXMID𝑥𝑦) → (𝑥 ∪ (𝑦𝑥)) = 𝑦)
2019ex 115 . . . 4 (EXMID → (𝑥𝑦 → (𝑥 ∪ (𝑦𝑥)) = 𝑦))
21 ssun1 3323 . . . . 5 𝑥 ⊆ (𝑥 ∪ (𝑦𝑥))
22 sseq2 3204 . . . . 5 ((𝑥 ∪ (𝑦𝑥)) = 𝑦 → (𝑥 ⊆ (𝑥 ∪ (𝑦𝑥)) ↔ 𝑥𝑦))
2321, 22mpbii 148 . . . 4 ((𝑥 ∪ (𝑦𝑥)) = 𝑦𝑥𝑦)
2420, 23impbid1 142 . . 3 (EXMID → (𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦))
2524alrimivv 1886 . 2 (EXMID → ∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦))
26 vex 2763 . . . . . 6 𝑧 ∈ V
27 p0ex 4218 . . . . . 6 {∅} ∈ V
28 sseq12 3205 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = {∅}) → (𝑥𝑦𝑧 ⊆ {∅}))
29 simpl 109 . . . . . . . . . 10 ((𝑥 = 𝑧𝑦 = {∅}) → 𝑥 = 𝑧)
30 simpr 110 . . . . . . . . . . 11 ((𝑥 = 𝑧𝑦 = {∅}) → 𝑦 = {∅})
3130, 29difeq12d 3279 . . . . . . . . . 10 ((𝑥 = 𝑧𝑦 = {∅}) → (𝑦𝑥) = ({∅} ∖ 𝑧))
3229, 31uneq12d 3315 . . . . . . . . 9 ((𝑥 = 𝑧𝑦 = {∅}) → (𝑥 ∪ (𝑦𝑥)) = (𝑧 ∪ ({∅} ∖ 𝑧)))
3332, 30eqeq12d 2208 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = {∅}) → ((𝑥 ∪ (𝑦𝑥)) = 𝑦 ↔ (𝑧 ∪ ({∅} ∖ 𝑧)) = {∅}))
3428, 33bibi12d 235 . . . . . . 7 ((𝑥 = 𝑧𝑦 = {∅}) → ((𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦) ↔ (𝑧 ⊆ {∅} ↔ (𝑧 ∪ ({∅} ∖ 𝑧)) = {∅})))
3534spc2gv 2852 . . . . . 6 ((𝑧 ∈ V ∧ {∅} ∈ V) → (∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦) → (𝑧 ⊆ {∅} ↔ (𝑧 ∪ ({∅} ∖ 𝑧)) = {∅})))
3626, 27, 35mp2an 426 . . . . 5 (∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦) → (𝑧 ⊆ {∅} ↔ (𝑧 ∪ ({∅} ∖ 𝑧)) = {∅}))
37 0ex 4157 . . . . . . . 8 ∅ ∈ V
3837snid 3650 . . . . . . 7 ∅ ∈ {∅}
39 eleq2 2257 . . . . . . 7 ((𝑧 ∪ ({∅} ∖ 𝑧)) = {∅} → (∅ ∈ (𝑧 ∪ ({∅} ∖ 𝑧)) ↔ ∅ ∈ {∅}))
4038, 39mpbiri 168 . . . . . 6 ((𝑧 ∪ ({∅} ∖ 𝑧)) = {∅} → ∅ ∈ (𝑧 ∪ ({∅} ∖ 𝑧)))
41 eldifn 3283 . . . . . . . 8 (∅ ∈ ({∅} ∖ 𝑧) → ¬ ∅ ∈ 𝑧)
4241orim2i 762 . . . . . . 7 ((∅ ∈ 𝑧 ∨ ∅ ∈ ({∅} ∖ 𝑧)) → (∅ ∈ 𝑧 ∨ ¬ ∅ ∈ 𝑧))
43 elun 3301 . . . . . . 7 (∅ ∈ (𝑧 ∪ ({∅} ∖ 𝑧)) ↔ (∅ ∈ 𝑧 ∨ ∅ ∈ ({∅} ∖ 𝑧)))
44 df-dc 836 . . . . . . 7 (DECID ∅ ∈ 𝑧 ↔ (∅ ∈ 𝑧 ∨ ¬ ∅ ∈ 𝑧))
4542, 43, 443imtr4i 201 . . . . . 6 (∅ ∈ (𝑧 ∪ ({∅} ∖ 𝑧)) → DECID ∅ ∈ 𝑧)
4640, 45syl 14 . . . . 5 ((𝑧 ∪ ({∅} ∖ 𝑧)) = {∅} → DECID ∅ ∈ 𝑧)
4736, 46biimtrdi 163 . . . 4 (∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦) → (𝑧 ⊆ {∅} → DECID ∅ ∈ 𝑧))
4847alrimiv 1885 . . 3 (∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦) → ∀𝑧(𝑧 ⊆ {∅} → DECID ∅ ∈ 𝑧))
49 df-exmid 4225 . . 3 (EXMID ↔ ∀𝑧(𝑧 ⊆ {∅} → DECID ∅ ∈ 𝑧))
5048, 49sylibr 134 . 2 (∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦) → EXMID)
5125, 50impbii 126 1 (EXMID ↔ ∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  wal 1362   = wceq 1364  wcel 2164  Vcvv 2760  cdif 3151  cun 3152  wss 3154  c0 3447  {csn 3619  EXMIDwem 4224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-exmid 4225
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator