| Step | Hyp | Ref
| Expression |
| 1 | | undifss 3532 |
. . . . . . . 8
⊢ (𝑥 ⊆ 𝑦 ↔ (𝑥 ∪ (𝑦 ∖ 𝑥)) ⊆ 𝑦) |
| 2 | 1 | biimpi 120 |
. . . . . . 7
⊢ (𝑥 ⊆ 𝑦 → (𝑥 ∪ (𝑦 ∖ 𝑥)) ⊆ 𝑦) |
| 3 | 2 | adantl 277 |
. . . . . 6
⊢
((EXMID ∧ 𝑥 ⊆ 𝑦) → (𝑥 ∪ (𝑦 ∖ 𝑥)) ⊆ 𝑦) |
| 4 | | elun1 3331 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝑥 → 𝑧 ∈ (𝑥 ∪ (𝑦 ∖ 𝑥))) |
| 5 | 4 | adantl 277 |
. . . . . . . . . 10
⊢
(((EXMID ∧ 𝑧 ∈ 𝑦) ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ (𝑥 ∪ (𝑦 ∖ 𝑥))) |
| 6 | | simplr 528 |
. . . . . . . . . . . 12
⊢
(((EXMID ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
| 7 | | simpr 110 |
. . . . . . . . . . . 12
⊢
(((EXMID ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 ∈ 𝑥) → ¬ 𝑧 ∈ 𝑥) |
| 8 | 6, 7 | eldifd 3167 |
. . . . . . . . . . 11
⊢
(((EXMID ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 ∈ 𝑥) → 𝑧 ∈ (𝑦 ∖ 𝑥)) |
| 9 | | elun2 3332 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝑦 ∖ 𝑥) → 𝑧 ∈ (𝑥 ∪ (𝑦 ∖ 𝑥))) |
| 10 | 8, 9 | syl 14 |
. . . . . . . . . 10
⊢
(((EXMID ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 ∈ 𝑥) → 𝑧 ∈ (𝑥 ∪ (𝑦 ∖ 𝑥))) |
| 11 | | exmidexmid 4230 |
. . . . . . . . . . . 12
⊢
(EXMID → DECID 𝑧 ∈ 𝑥) |
| 12 | | exmiddc 837 |
. . . . . . . . . . . 12
⊢
(DECID 𝑧 ∈ 𝑥 → (𝑧 ∈ 𝑥 ∨ ¬ 𝑧 ∈ 𝑥)) |
| 13 | 11, 12 | syl 14 |
. . . . . . . . . . 11
⊢
(EXMID → (𝑧 ∈ 𝑥 ∨ ¬ 𝑧 ∈ 𝑥)) |
| 14 | 13 | adantr 276 |
. . . . . . . . . 10
⊢
((EXMID ∧ 𝑧 ∈ 𝑦) → (𝑧 ∈ 𝑥 ∨ ¬ 𝑧 ∈ 𝑥)) |
| 15 | 5, 10, 14 | mpjaodan 799 |
. . . . . . . . 9
⊢
((EXMID ∧ 𝑧 ∈ 𝑦) → 𝑧 ∈ (𝑥 ∪ (𝑦 ∖ 𝑥))) |
| 16 | 15 | ex 115 |
. . . . . . . 8
⊢
(EXMID → (𝑧 ∈ 𝑦 → 𝑧 ∈ (𝑥 ∪ (𝑦 ∖ 𝑥)))) |
| 17 | 16 | ssrdv 3190 |
. . . . . . 7
⊢
(EXMID → 𝑦 ⊆ (𝑥 ∪ (𝑦 ∖ 𝑥))) |
| 18 | 17 | adantr 276 |
. . . . . 6
⊢
((EXMID ∧ 𝑥 ⊆ 𝑦) → 𝑦 ⊆ (𝑥 ∪ (𝑦 ∖ 𝑥))) |
| 19 | 3, 18 | eqssd 3201 |
. . . . 5
⊢
((EXMID ∧ 𝑥 ⊆ 𝑦) → (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦) |
| 20 | 19 | ex 115 |
. . . 4
⊢
(EXMID → (𝑥 ⊆ 𝑦 → (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦)) |
| 21 | | ssun1 3327 |
. . . . 5
⊢ 𝑥 ⊆ (𝑥 ∪ (𝑦 ∖ 𝑥)) |
| 22 | | sseq2 3208 |
. . . . 5
⊢ ((𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦 → (𝑥 ⊆ (𝑥 ∪ (𝑦 ∖ 𝑥)) ↔ 𝑥 ⊆ 𝑦)) |
| 23 | 21, 22 | mpbii 148 |
. . . 4
⊢ ((𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦 → 𝑥 ⊆ 𝑦) |
| 24 | 20, 23 | impbid1 142 |
. . 3
⊢
(EXMID → (𝑥 ⊆ 𝑦 ↔ (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦)) |
| 25 | 24 | alrimivv 1889 |
. 2
⊢
(EXMID → ∀𝑥∀𝑦(𝑥 ⊆ 𝑦 ↔ (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦)) |
| 26 | | vex 2766 |
. . . . . 6
⊢ 𝑧 ∈ V |
| 27 | | p0ex 4222 |
. . . . . 6
⊢ {∅}
∈ V |
| 28 | | sseq12 3209 |
. . . . . . . 8
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = {∅}) → (𝑥 ⊆ 𝑦 ↔ 𝑧 ⊆ {∅})) |
| 29 | | simpl 109 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = {∅}) → 𝑥 = 𝑧) |
| 30 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = {∅}) → 𝑦 = {∅}) |
| 31 | 30, 29 | difeq12d 3283 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = {∅}) → (𝑦 ∖ 𝑥) = ({∅} ∖ 𝑧)) |
| 32 | 29, 31 | uneq12d 3319 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = {∅}) → (𝑥 ∪ (𝑦 ∖ 𝑥)) = (𝑧 ∪ ({∅} ∖ 𝑧))) |
| 33 | 32, 30 | eqeq12d 2211 |
. . . . . . . 8
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = {∅}) → ((𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦 ↔ (𝑧 ∪ ({∅} ∖ 𝑧)) = {∅})) |
| 34 | 28, 33 | bibi12d 235 |
. . . . . . 7
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = {∅}) → ((𝑥 ⊆ 𝑦 ↔ (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦) ↔ (𝑧 ⊆ {∅} ↔ (𝑧 ∪ ({∅} ∖ 𝑧)) = {∅}))) |
| 35 | 34 | spc2gv 2855 |
. . . . . 6
⊢ ((𝑧 ∈ V ∧ {∅} ∈
V) → (∀𝑥∀𝑦(𝑥 ⊆ 𝑦 ↔ (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦) → (𝑧 ⊆ {∅} ↔ (𝑧 ∪ ({∅} ∖ 𝑧)) = {∅}))) |
| 36 | 26, 27, 35 | mp2an 426 |
. . . . 5
⊢
(∀𝑥∀𝑦(𝑥 ⊆ 𝑦 ↔ (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦) → (𝑧 ⊆ {∅} ↔ (𝑧 ∪ ({∅} ∖ 𝑧)) = {∅})) |
| 37 | | 0ex 4161 |
. . . . . . . 8
⊢ ∅
∈ V |
| 38 | 37 | snid 3654 |
. . . . . . 7
⊢ ∅
∈ {∅} |
| 39 | | eleq2 2260 |
. . . . . . 7
⊢ ((𝑧 ∪ ({∅} ∖ 𝑧)) = {∅} → (∅
∈ (𝑧 ∪ ({∅}
∖ 𝑧)) ↔ ∅
∈ {∅})) |
| 40 | 38, 39 | mpbiri 168 |
. . . . . 6
⊢ ((𝑧 ∪ ({∅} ∖ 𝑧)) = {∅} → ∅
∈ (𝑧 ∪ ({∅}
∖ 𝑧))) |
| 41 | | eldifn 3287 |
. . . . . . . 8
⊢ (∅
∈ ({∅} ∖ 𝑧) → ¬ ∅ ∈ 𝑧) |
| 42 | 41 | orim2i 762 |
. . . . . . 7
⊢ ((∅
∈ 𝑧 ∨ ∅
∈ ({∅} ∖ 𝑧)) → (∅ ∈ 𝑧 ∨ ¬ ∅ ∈ 𝑧)) |
| 43 | | elun 3305 |
. . . . . . 7
⊢ (∅
∈ (𝑧 ∪ ({∅}
∖ 𝑧)) ↔ (∅
∈ 𝑧 ∨ ∅
∈ ({∅} ∖ 𝑧))) |
| 44 | | df-dc 836 |
. . . . . . 7
⊢
(DECID ∅ ∈ 𝑧 ↔ (∅ ∈ 𝑧 ∨ ¬ ∅ ∈ 𝑧)) |
| 45 | 42, 43, 44 | 3imtr4i 201 |
. . . . . 6
⊢ (∅
∈ (𝑧 ∪ ({∅}
∖ 𝑧)) →
DECID ∅ ∈ 𝑧) |
| 46 | 40, 45 | syl 14 |
. . . . 5
⊢ ((𝑧 ∪ ({∅} ∖ 𝑧)) = {∅} →
DECID ∅ ∈ 𝑧) |
| 47 | 36, 46 | biimtrdi 163 |
. . . 4
⊢
(∀𝑥∀𝑦(𝑥 ⊆ 𝑦 ↔ (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦) → (𝑧 ⊆ {∅} →
DECID ∅ ∈ 𝑧)) |
| 48 | 47 | alrimiv 1888 |
. . 3
⊢
(∀𝑥∀𝑦(𝑥 ⊆ 𝑦 ↔ (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦) → ∀𝑧(𝑧 ⊆ {∅} →
DECID ∅ ∈ 𝑧)) |
| 49 | | df-exmid 4229 |
. . 3
⊢
(EXMID ↔ ∀𝑧(𝑧 ⊆ {∅} →
DECID ∅ ∈ 𝑧)) |
| 50 | 48, 49 | sylibr 134 |
. 2
⊢
(∀𝑥∀𝑦(𝑥 ⊆ 𝑦 ↔ (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦) →
EXMID) |
| 51 | 25, 50 | impbii 126 |
1
⊢
(EXMID ↔ ∀𝑥∀𝑦(𝑥 ⊆ 𝑦 ↔ (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦)) |