ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidundif GIF version

Theorem exmidundif 4167
Description: Excluded middle is equivalent to every subset having a complement. That is, the union of a subset and its relative complement being the whole set. Although special cases such as undifss 3474 and undifdcss 6867 are provable, the full statement is equivalent to excluded middle as shown here. (Contributed by Jim Kingdon, 18-Jun-2022.)
Assertion
Ref Expression
exmidundif (EXMID ↔ ∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦))
Distinct variable group:   𝑥,𝑦

Proof of Theorem exmidundif
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 undifss 3474 . . . . . . . 8 (𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) ⊆ 𝑦)
21biimpi 119 . . . . . . 7 (𝑥𝑦 → (𝑥 ∪ (𝑦𝑥)) ⊆ 𝑦)
32adantl 275 . . . . . 6 ((EXMID𝑥𝑦) → (𝑥 ∪ (𝑦𝑥)) ⊆ 𝑦)
4 elun1 3274 . . . . . . . . . . 11 (𝑧𝑥𝑧 ∈ (𝑥 ∪ (𝑦𝑥)))
54adantl 275 . . . . . . . . . 10 (((EXMID𝑧𝑦) ∧ 𝑧𝑥) → 𝑧 ∈ (𝑥 ∪ (𝑦𝑥)))
6 simplr 520 . . . . . . . . . . . 12 (((EXMID𝑧𝑦) ∧ ¬ 𝑧𝑥) → 𝑧𝑦)
7 simpr 109 . . . . . . . . . . . 12 (((EXMID𝑧𝑦) ∧ ¬ 𝑧𝑥) → ¬ 𝑧𝑥)
86, 7eldifd 3112 . . . . . . . . . . 11 (((EXMID𝑧𝑦) ∧ ¬ 𝑧𝑥) → 𝑧 ∈ (𝑦𝑥))
9 elun2 3275 . . . . . . . . . . 11 (𝑧 ∈ (𝑦𝑥) → 𝑧 ∈ (𝑥 ∪ (𝑦𝑥)))
108, 9syl 14 . . . . . . . . . 10 (((EXMID𝑧𝑦) ∧ ¬ 𝑧𝑥) → 𝑧 ∈ (𝑥 ∪ (𝑦𝑥)))
11 exmidexmid 4157 . . . . . . . . . . . 12 (EXMIDDECID 𝑧𝑥)
12 exmiddc 822 . . . . . . . . . . . 12 (DECID 𝑧𝑥 → (𝑧𝑥 ∨ ¬ 𝑧𝑥))
1311, 12syl 14 . . . . . . . . . . 11 (EXMID → (𝑧𝑥 ∨ ¬ 𝑧𝑥))
1413adantr 274 . . . . . . . . . 10 ((EXMID𝑧𝑦) → (𝑧𝑥 ∨ ¬ 𝑧𝑥))
155, 10, 14mpjaodan 788 . . . . . . . . 9 ((EXMID𝑧𝑦) → 𝑧 ∈ (𝑥 ∪ (𝑦𝑥)))
1615ex 114 . . . . . . . 8 (EXMID → (𝑧𝑦𝑧 ∈ (𝑥 ∪ (𝑦𝑥))))
1716ssrdv 3134 . . . . . . 7 (EXMID𝑦 ⊆ (𝑥 ∪ (𝑦𝑥)))
1817adantr 274 . . . . . 6 ((EXMID𝑥𝑦) → 𝑦 ⊆ (𝑥 ∪ (𝑦𝑥)))
193, 18eqssd 3145 . . . . 5 ((EXMID𝑥𝑦) → (𝑥 ∪ (𝑦𝑥)) = 𝑦)
2019ex 114 . . . 4 (EXMID → (𝑥𝑦 → (𝑥 ∪ (𝑦𝑥)) = 𝑦))
21 ssun1 3270 . . . . 5 𝑥 ⊆ (𝑥 ∪ (𝑦𝑥))
22 sseq2 3152 . . . . 5 ((𝑥 ∪ (𝑦𝑥)) = 𝑦 → (𝑥 ⊆ (𝑥 ∪ (𝑦𝑥)) ↔ 𝑥𝑦))
2321, 22mpbii 147 . . . 4 ((𝑥 ∪ (𝑦𝑥)) = 𝑦𝑥𝑦)
2420, 23impbid1 141 . . 3 (EXMID → (𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦))
2524alrimivv 1855 . 2 (EXMID → ∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦))
26 vex 2715 . . . . . 6 𝑧 ∈ V
27 p0ex 4149 . . . . . 6 {∅} ∈ V
28 sseq12 3153 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = {∅}) → (𝑥𝑦𝑧 ⊆ {∅}))
29 simpl 108 . . . . . . . . . 10 ((𝑥 = 𝑧𝑦 = {∅}) → 𝑥 = 𝑧)
30 simpr 109 . . . . . . . . . . 11 ((𝑥 = 𝑧𝑦 = {∅}) → 𝑦 = {∅})
3130, 29difeq12d 3226 . . . . . . . . . 10 ((𝑥 = 𝑧𝑦 = {∅}) → (𝑦𝑥) = ({∅} ∖ 𝑧))
3229, 31uneq12d 3262 . . . . . . . . 9 ((𝑥 = 𝑧𝑦 = {∅}) → (𝑥 ∪ (𝑦𝑥)) = (𝑧 ∪ ({∅} ∖ 𝑧)))
3332, 30eqeq12d 2172 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = {∅}) → ((𝑥 ∪ (𝑦𝑥)) = 𝑦 ↔ (𝑧 ∪ ({∅} ∖ 𝑧)) = {∅}))
3428, 33bibi12d 234 . . . . . . 7 ((𝑥 = 𝑧𝑦 = {∅}) → ((𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦) ↔ (𝑧 ⊆ {∅} ↔ (𝑧 ∪ ({∅} ∖ 𝑧)) = {∅})))
3534spc2gv 2803 . . . . . 6 ((𝑧 ∈ V ∧ {∅} ∈ V) → (∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦) → (𝑧 ⊆ {∅} ↔ (𝑧 ∪ ({∅} ∖ 𝑧)) = {∅})))
3626, 27, 35mp2an 423 . . . . 5 (∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦) → (𝑧 ⊆ {∅} ↔ (𝑧 ∪ ({∅} ∖ 𝑧)) = {∅}))
37 0ex 4091 . . . . . . . 8 ∅ ∈ V
3837snid 3591 . . . . . . 7 ∅ ∈ {∅}
39 eleq2 2221 . . . . . . 7 ((𝑧 ∪ ({∅} ∖ 𝑧)) = {∅} → (∅ ∈ (𝑧 ∪ ({∅} ∖ 𝑧)) ↔ ∅ ∈ {∅}))
4038, 39mpbiri 167 . . . . . 6 ((𝑧 ∪ ({∅} ∖ 𝑧)) = {∅} → ∅ ∈ (𝑧 ∪ ({∅} ∖ 𝑧)))
41 eldifn 3230 . . . . . . . 8 (∅ ∈ ({∅} ∖ 𝑧) → ¬ ∅ ∈ 𝑧)
4241orim2i 751 . . . . . . 7 ((∅ ∈ 𝑧 ∨ ∅ ∈ ({∅} ∖ 𝑧)) → (∅ ∈ 𝑧 ∨ ¬ ∅ ∈ 𝑧))
43 elun 3248 . . . . . . 7 (∅ ∈ (𝑧 ∪ ({∅} ∖ 𝑧)) ↔ (∅ ∈ 𝑧 ∨ ∅ ∈ ({∅} ∖ 𝑧)))
44 df-dc 821 . . . . . . 7 (DECID ∅ ∈ 𝑧 ↔ (∅ ∈ 𝑧 ∨ ¬ ∅ ∈ 𝑧))
4542, 43, 443imtr4i 200 . . . . . 6 (∅ ∈ (𝑧 ∪ ({∅} ∖ 𝑧)) → DECID ∅ ∈ 𝑧)
4640, 45syl 14 . . . . 5 ((𝑧 ∪ ({∅} ∖ 𝑧)) = {∅} → DECID ∅ ∈ 𝑧)
4736, 46syl6bi 162 . . . 4 (∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦) → (𝑧 ⊆ {∅} → DECID ∅ ∈ 𝑧))
4847alrimiv 1854 . . 3 (∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦) → ∀𝑧(𝑧 ⊆ {∅} → DECID ∅ ∈ 𝑧))
49 df-exmid 4156 . . 3 (EXMID ↔ ∀𝑧(𝑧 ⊆ {∅} → DECID ∅ ∈ 𝑧))
5048, 49sylibr 133 . 2 (∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦) → EXMID)
5125, 50impbii 125 1 (EXMID ↔ ∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 820  wal 1333   = wceq 1335  wcel 2128  Vcvv 2712  cdif 3099  cun 3100  wss 3102  c0 3394  {csn 3560  EXMIDwem 4155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4135
This theorem depends on definitions:  df-bi 116  df-dc 821  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-exmid 4156
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator