ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidundif GIF version

Theorem exmidundif 4239
Description: Excluded middle is equivalent to every subset having a complement. That is, the union of a subset and its relative complement being the whole set. Although special cases such as undifss 3531 and undifdcss 6984 are provable, the full statement is equivalent to excluded middle as shown here. (Contributed by Jim Kingdon, 18-Jun-2022.)
Assertion
Ref Expression
exmidundif (EXMID ↔ ∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦))
Distinct variable group:   𝑥,𝑦

Proof of Theorem exmidundif
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 undifss 3531 . . . . . . . 8 (𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) ⊆ 𝑦)
21biimpi 120 . . . . . . 7 (𝑥𝑦 → (𝑥 ∪ (𝑦𝑥)) ⊆ 𝑦)
32adantl 277 . . . . . 6 ((EXMID𝑥𝑦) → (𝑥 ∪ (𝑦𝑥)) ⊆ 𝑦)
4 elun1 3330 . . . . . . . . . . 11 (𝑧𝑥𝑧 ∈ (𝑥 ∪ (𝑦𝑥)))
54adantl 277 . . . . . . . . . 10 (((EXMID𝑧𝑦) ∧ 𝑧𝑥) → 𝑧 ∈ (𝑥 ∪ (𝑦𝑥)))
6 simplr 528 . . . . . . . . . . . 12 (((EXMID𝑧𝑦) ∧ ¬ 𝑧𝑥) → 𝑧𝑦)
7 simpr 110 . . . . . . . . . . . 12 (((EXMID𝑧𝑦) ∧ ¬ 𝑧𝑥) → ¬ 𝑧𝑥)
86, 7eldifd 3167 . . . . . . . . . . 11 (((EXMID𝑧𝑦) ∧ ¬ 𝑧𝑥) → 𝑧 ∈ (𝑦𝑥))
9 elun2 3331 . . . . . . . . . . 11 (𝑧 ∈ (𝑦𝑥) → 𝑧 ∈ (𝑥 ∪ (𝑦𝑥)))
108, 9syl 14 . . . . . . . . . 10 (((EXMID𝑧𝑦) ∧ ¬ 𝑧𝑥) → 𝑧 ∈ (𝑥 ∪ (𝑦𝑥)))
11 exmidexmid 4229 . . . . . . . . . . . 12 (EXMIDDECID 𝑧𝑥)
12 exmiddc 837 . . . . . . . . . . . 12 (DECID 𝑧𝑥 → (𝑧𝑥 ∨ ¬ 𝑧𝑥))
1311, 12syl 14 . . . . . . . . . . 11 (EXMID → (𝑧𝑥 ∨ ¬ 𝑧𝑥))
1413adantr 276 . . . . . . . . . 10 ((EXMID𝑧𝑦) → (𝑧𝑥 ∨ ¬ 𝑧𝑥))
155, 10, 14mpjaodan 799 . . . . . . . . 9 ((EXMID𝑧𝑦) → 𝑧 ∈ (𝑥 ∪ (𝑦𝑥)))
1615ex 115 . . . . . . . 8 (EXMID → (𝑧𝑦𝑧 ∈ (𝑥 ∪ (𝑦𝑥))))
1716ssrdv 3189 . . . . . . 7 (EXMID𝑦 ⊆ (𝑥 ∪ (𝑦𝑥)))
1817adantr 276 . . . . . 6 ((EXMID𝑥𝑦) → 𝑦 ⊆ (𝑥 ∪ (𝑦𝑥)))
193, 18eqssd 3200 . . . . 5 ((EXMID𝑥𝑦) → (𝑥 ∪ (𝑦𝑥)) = 𝑦)
2019ex 115 . . . 4 (EXMID → (𝑥𝑦 → (𝑥 ∪ (𝑦𝑥)) = 𝑦))
21 ssun1 3326 . . . . 5 𝑥 ⊆ (𝑥 ∪ (𝑦𝑥))
22 sseq2 3207 . . . . 5 ((𝑥 ∪ (𝑦𝑥)) = 𝑦 → (𝑥 ⊆ (𝑥 ∪ (𝑦𝑥)) ↔ 𝑥𝑦))
2321, 22mpbii 148 . . . 4 ((𝑥 ∪ (𝑦𝑥)) = 𝑦𝑥𝑦)
2420, 23impbid1 142 . . 3 (EXMID → (𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦))
2524alrimivv 1889 . 2 (EXMID → ∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦))
26 vex 2766 . . . . . 6 𝑧 ∈ V
27 p0ex 4221 . . . . . 6 {∅} ∈ V
28 sseq12 3208 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = {∅}) → (𝑥𝑦𝑧 ⊆ {∅}))
29 simpl 109 . . . . . . . . . 10 ((𝑥 = 𝑧𝑦 = {∅}) → 𝑥 = 𝑧)
30 simpr 110 . . . . . . . . . . 11 ((𝑥 = 𝑧𝑦 = {∅}) → 𝑦 = {∅})
3130, 29difeq12d 3282 . . . . . . . . . 10 ((𝑥 = 𝑧𝑦 = {∅}) → (𝑦𝑥) = ({∅} ∖ 𝑧))
3229, 31uneq12d 3318 . . . . . . . . 9 ((𝑥 = 𝑧𝑦 = {∅}) → (𝑥 ∪ (𝑦𝑥)) = (𝑧 ∪ ({∅} ∖ 𝑧)))
3332, 30eqeq12d 2211 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = {∅}) → ((𝑥 ∪ (𝑦𝑥)) = 𝑦 ↔ (𝑧 ∪ ({∅} ∖ 𝑧)) = {∅}))
3428, 33bibi12d 235 . . . . . . 7 ((𝑥 = 𝑧𝑦 = {∅}) → ((𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦) ↔ (𝑧 ⊆ {∅} ↔ (𝑧 ∪ ({∅} ∖ 𝑧)) = {∅})))
3534spc2gv 2855 . . . . . 6 ((𝑧 ∈ V ∧ {∅} ∈ V) → (∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦) → (𝑧 ⊆ {∅} ↔ (𝑧 ∪ ({∅} ∖ 𝑧)) = {∅})))
3626, 27, 35mp2an 426 . . . . 5 (∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦) → (𝑧 ⊆ {∅} ↔ (𝑧 ∪ ({∅} ∖ 𝑧)) = {∅}))
37 0ex 4160 . . . . . . . 8 ∅ ∈ V
3837snid 3653 . . . . . . 7 ∅ ∈ {∅}
39 eleq2 2260 . . . . . . 7 ((𝑧 ∪ ({∅} ∖ 𝑧)) = {∅} → (∅ ∈ (𝑧 ∪ ({∅} ∖ 𝑧)) ↔ ∅ ∈ {∅}))
4038, 39mpbiri 168 . . . . . 6 ((𝑧 ∪ ({∅} ∖ 𝑧)) = {∅} → ∅ ∈ (𝑧 ∪ ({∅} ∖ 𝑧)))
41 eldifn 3286 . . . . . . . 8 (∅ ∈ ({∅} ∖ 𝑧) → ¬ ∅ ∈ 𝑧)
4241orim2i 762 . . . . . . 7 ((∅ ∈ 𝑧 ∨ ∅ ∈ ({∅} ∖ 𝑧)) → (∅ ∈ 𝑧 ∨ ¬ ∅ ∈ 𝑧))
43 elun 3304 . . . . . . 7 (∅ ∈ (𝑧 ∪ ({∅} ∖ 𝑧)) ↔ (∅ ∈ 𝑧 ∨ ∅ ∈ ({∅} ∖ 𝑧)))
44 df-dc 836 . . . . . . 7 (DECID ∅ ∈ 𝑧 ↔ (∅ ∈ 𝑧 ∨ ¬ ∅ ∈ 𝑧))
4542, 43, 443imtr4i 201 . . . . . 6 (∅ ∈ (𝑧 ∪ ({∅} ∖ 𝑧)) → DECID ∅ ∈ 𝑧)
4640, 45syl 14 . . . . 5 ((𝑧 ∪ ({∅} ∖ 𝑧)) = {∅} → DECID ∅ ∈ 𝑧)
4736, 46biimtrdi 163 . . . 4 (∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦) → (𝑧 ⊆ {∅} → DECID ∅ ∈ 𝑧))
4847alrimiv 1888 . . 3 (∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦) → ∀𝑧(𝑧 ⊆ {∅} → DECID ∅ ∈ 𝑧))
49 df-exmid 4228 . . 3 (EXMID ↔ ∀𝑧(𝑧 ⊆ {∅} → DECID ∅ ∈ 𝑧))
5048, 49sylibr 134 . 2 (∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦) → EXMID)
5125, 50impbii 126 1 (EXMID ↔ ∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  wal 1362   = wceq 1364  wcel 2167  Vcvv 2763  cdif 3154  cun 3155  wss 3157  c0 3450  {csn 3622  EXMIDwem 4227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-exmid 4228
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator