| Step | Hyp | Ref
 | Expression | 
| 1 |   | undifss 3531 | 
. . . . . . 7
⊢ (𝑥 ⊆ 𝑦 ↔ (𝑥 ∪ (𝑦 ∖ 𝑥)) ⊆ 𝑦) | 
| 2 | 1 | biimpi 120 | 
. . . . . 6
⊢ (𝑥 ⊆ 𝑦 → (𝑥 ∪ (𝑦 ∖ 𝑥)) ⊆ 𝑦) | 
| 3 | 2 | adantl 277 | 
. . . . 5
⊢
((EXMID ∧ 𝑥 ⊆ 𝑦) → (𝑥 ∪ (𝑦 ∖ 𝑥)) ⊆ 𝑦) | 
| 4 |   | elun1 3330 | 
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑥 → 𝑧 ∈ (𝑥 ∪ (𝑦 ∖ 𝑥))) | 
| 5 | 4 | adantl 277 | 
. . . . . . . . 9
⊢
(((EXMID ∧ 𝑧 ∈ 𝑦) ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ (𝑥 ∪ (𝑦 ∖ 𝑥))) | 
| 6 |   | simplr 528 | 
. . . . . . . . . . 11
⊢
(((EXMID ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 ∈ 𝑥) → 𝑧 ∈ 𝑦) | 
| 7 |   | simpr 110 | 
. . . . . . . . . . 11
⊢
(((EXMID ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 ∈ 𝑥) → ¬ 𝑧 ∈ 𝑥) | 
| 8 | 6, 7 | eldifd 3167 | 
. . . . . . . . . 10
⊢
(((EXMID ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 ∈ 𝑥) → 𝑧 ∈ (𝑦 ∖ 𝑥)) | 
| 9 |   | elun2 3331 | 
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝑦 ∖ 𝑥) → 𝑧 ∈ (𝑥 ∪ (𝑦 ∖ 𝑥))) | 
| 10 | 8, 9 | syl 14 | 
. . . . . . . . 9
⊢
(((EXMID ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 ∈ 𝑥) → 𝑧 ∈ (𝑥 ∪ (𝑦 ∖ 𝑥))) | 
| 11 |   | exmidexmid 4229 | 
. . . . . . . . . . 11
⊢
(EXMID → DECID 𝑧 ∈ 𝑥) | 
| 12 |   | exmiddc 837 | 
. . . . . . . . . . 11
⊢
(DECID 𝑧 ∈ 𝑥 → (𝑧 ∈ 𝑥 ∨ ¬ 𝑧 ∈ 𝑥)) | 
| 13 | 11, 12 | syl 14 | 
. . . . . . . . . 10
⊢
(EXMID → (𝑧 ∈ 𝑥 ∨ ¬ 𝑧 ∈ 𝑥)) | 
| 14 | 13 | adantr 276 | 
. . . . . . . . 9
⊢
((EXMID ∧ 𝑧 ∈ 𝑦) → (𝑧 ∈ 𝑥 ∨ ¬ 𝑧 ∈ 𝑥)) | 
| 15 | 5, 10, 14 | mpjaodan 799 | 
. . . . . . . 8
⊢
((EXMID ∧ 𝑧 ∈ 𝑦) → 𝑧 ∈ (𝑥 ∪ (𝑦 ∖ 𝑥))) | 
| 16 | 15 | ex 115 | 
. . . . . . 7
⊢
(EXMID → (𝑧 ∈ 𝑦 → 𝑧 ∈ (𝑥 ∪ (𝑦 ∖ 𝑥)))) | 
| 17 | 16 | ssrdv 3189 | 
. . . . . 6
⊢
(EXMID → 𝑦 ⊆ (𝑥 ∪ (𝑦 ∖ 𝑥))) | 
| 18 | 17 | adantr 276 | 
. . . . 5
⊢
((EXMID ∧ 𝑥 ⊆ 𝑦) → 𝑦 ⊆ (𝑥 ∪ (𝑦 ∖ 𝑥))) | 
| 19 | 3, 18 | eqssd 3200 | 
. . . 4
⊢
((EXMID ∧ 𝑥 ⊆ 𝑦) → (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦) | 
| 20 | 19 | ex 115 | 
. . 3
⊢
(EXMID → (𝑥 ⊆ 𝑦 → (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦)) | 
| 21 | 20 | alrimivv 1889 | 
. 2
⊢
(EXMID → ∀𝑥∀𝑦(𝑥 ⊆ 𝑦 → (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦)) | 
| 22 |   | vex 2766 | 
. . . . . 6
⊢ 𝑧 ∈ V | 
| 23 |   | p0ex 4221 | 
. . . . . 6
⊢ {∅}
∈ V | 
| 24 |   | sseq12 3208 | 
. . . . . . . 8
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = {∅}) → (𝑥 ⊆ 𝑦 ↔ 𝑧 ⊆ {∅})) | 
| 25 |   | simpl 109 | 
. . . . . . . . . 10
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = {∅}) → 𝑥 = 𝑧) | 
| 26 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = {∅}) → 𝑦 = {∅}) | 
| 27 | 26, 25 | difeq12d 3282 | 
. . . . . . . . . 10
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = {∅}) → (𝑦 ∖ 𝑥) = ({∅} ∖ 𝑧)) | 
| 28 | 25, 27 | uneq12d 3318 | 
. . . . . . . . 9
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = {∅}) → (𝑥 ∪ (𝑦 ∖ 𝑥)) = (𝑧 ∪ ({∅} ∖ 𝑧))) | 
| 29 | 28, 26 | eqeq12d 2211 | 
. . . . . . . 8
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = {∅}) → ((𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦 ↔ (𝑧 ∪ ({∅} ∖ 𝑧)) = {∅})) | 
| 30 | 24, 29 | imbi12d 234 | 
. . . . . . 7
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = {∅}) → ((𝑥 ⊆ 𝑦 → (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦) ↔ (𝑧 ⊆ {∅} → (𝑧 ∪ ({∅} ∖ 𝑧)) = {∅}))) | 
| 31 | 30 | spc2gv 2855 | 
. . . . . 6
⊢ ((𝑧 ∈ V ∧ {∅} ∈
V) → (∀𝑥∀𝑦(𝑥 ⊆ 𝑦 → (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦) → (𝑧 ⊆ {∅} → (𝑧 ∪ ({∅} ∖ 𝑧)) = {∅}))) | 
| 32 | 22, 23, 31 | mp2an 426 | 
. . . . 5
⊢
(∀𝑥∀𝑦(𝑥 ⊆ 𝑦 → (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦) → (𝑧 ⊆ {∅} → (𝑧 ∪ ({∅} ∖ 𝑧)) = {∅})) | 
| 33 |   | 0ex 4160 | 
. . . . . . . 8
⊢ ∅
∈ V | 
| 34 | 33 | snid 3653 | 
. . . . . . 7
⊢ ∅
∈ {∅} | 
| 35 |   | eleq2 2260 | 
. . . . . . 7
⊢ ((𝑧 ∪ ({∅} ∖ 𝑧)) = {∅} → (∅
∈ (𝑧 ∪ ({∅}
∖ 𝑧)) ↔ ∅
∈ {∅})) | 
| 36 | 34, 35 | mpbiri 168 | 
. . . . . 6
⊢ ((𝑧 ∪ ({∅} ∖ 𝑧)) = {∅} → ∅
∈ (𝑧 ∪ ({∅}
∖ 𝑧))) | 
| 37 |   | eldifn 3286 | 
. . . . . . . 8
⊢ (∅
∈ ({∅} ∖ 𝑧) → ¬ ∅ ∈ 𝑧) | 
| 38 | 37 | orim2i 762 | 
. . . . . . 7
⊢ ((∅
∈ 𝑧 ∨ ∅
∈ ({∅} ∖ 𝑧)) → (∅ ∈ 𝑧 ∨ ¬ ∅ ∈ 𝑧)) | 
| 39 |   | elun 3304 | 
. . . . . . 7
⊢ (∅
∈ (𝑧 ∪ ({∅}
∖ 𝑧)) ↔ (∅
∈ 𝑧 ∨ ∅
∈ ({∅} ∖ 𝑧))) | 
| 40 |   | df-dc 836 | 
. . . . . . 7
⊢
(DECID ∅ ∈ 𝑧 ↔ (∅ ∈ 𝑧 ∨ ¬ ∅ ∈ 𝑧)) | 
| 41 | 38, 39, 40 | 3imtr4i 201 | 
. . . . . 6
⊢ (∅
∈ (𝑧 ∪ ({∅}
∖ 𝑧)) →
DECID ∅ ∈ 𝑧) | 
| 42 | 36, 41 | syl 14 | 
. . . . 5
⊢ ((𝑧 ∪ ({∅} ∖ 𝑧)) = {∅} →
DECID ∅ ∈ 𝑧) | 
| 43 | 32, 42 | syl6 33 | 
. . . 4
⊢
(∀𝑥∀𝑦(𝑥 ⊆ 𝑦 → (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦) → (𝑧 ⊆ {∅} →
DECID ∅ ∈ 𝑧)) | 
| 44 | 43 | alrimiv 1888 | 
. . 3
⊢
(∀𝑥∀𝑦(𝑥 ⊆ 𝑦 → (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦) → ∀𝑧(𝑧 ⊆ {∅} →
DECID ∅ ∈ 𝑧)) | 
| 45 |   | df-exmid 4228 | 
. . 3
⊢
(EXMID ↔ ∀𝑧(𝑧 ⊆ {∅} →
DECID ∅ ∈ 𝑧)) | 
| 46 | 44, 45 | sylibr 134 | 
. 2
⊢
(∀𝑥∀𝑦(𝑥 ⊆ 𝑦 → (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦) →
EXMID) | 
| 47 | 21, 46 | impbii 126 | 
1
⊢
(EXMID ↔ ∀𝑥∀𝑦(𝑥 ⊆ 𝑦 → (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦)) |