Step | Hyp | Ref
| Expression |
1 | | eqimss2 3197 |
. . . 4
⊢ (𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) → (𝐵 ∪ (𝐴 ∖ 𝐵)) ⊆ 𝐴) |
2 | | undifss 3489 |
. . . 4
⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∪ (𝐴 ∖ 𝐵)) ⊆ 𝐴) |
3 | 1, 2 | sylibr 133 |
. . 3
⊢ (𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) → 𝐵 ⊆ 𝐴) |
4 | | eleq2 2230 |
. . . . . . . 8
⊢ (𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐵 ∪ (𝐴 ∖ 𝐵)))) |
5 | 4 | biimpa 294 |
. . . . . . 7
⊢ ((𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (𝐵 ∪ (𝐴 ∖ 𝐵))) |
6 | | elun 3263 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐵 ∪ (𝐴 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ (𝐴 ∖ 𝐵))) |
7 | 5, 6 | sylib 121 |
. . . . . 6
⊢ ((𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ (𝐴 ∖ 𝐵))) |
8 | | eldifn 3245 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) → ¬ 𝑥 ∈ 𝐵) |
9 | 8 | orim2i 751 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵 ∨ 𝑥 ∈ (𝐴 ∖ 𝐵)) → (𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ 𝐵)) |
10 | 7, 9 | syl 14 |
. . . . 5
⊢ ((𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ 𝐵)) |
11 | | df-dc 825 |
. . . . 5
⊢
(DECID 𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ 𝐵)) |
12 | 10, 11 | sylibr 133 |
. . . 4
⊢ ((𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) ∧ 𝑥 ∈ 𝐴) → DECID 𝑥 ∈ 𝐵) |
13 | 12 | ralrimiva 2539 |
. . 3
⊢ (𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) → ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) |
14 | 3, 13 | jca 304 |
. 2
⊢ (𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) → (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵)) |
15 | | elun1 3289 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐵 → 𝑦 ∈ (𝐵 ∪ (𝐴 ∖ 𝐵))) |
16 | 15 | adantl 275 |
. . . . . 6
⊢ ((((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ (𝐵 ∪ (𝐴 ∖ 𝐵))) |
17 | | simplr 520 |
. . . . . . . 8
⊢ ((((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐴) |
18 | | simpr 109 |
. . . . . . . 8
⊢ ((((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝐵) → ¬ 𝑦 ∈ 𝐵) |
19 | 17, 18 | eldifd 3126 |
. . . . . . 7
⊢ ((((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝐵) → 𝑦 ∈ (𝐴 ∖ 𝐵)) |
20 | | elun2 3290 |
. . . . . . 7
⊢ (𝑦 ∈ (𝐴 ∖ 𝐵) → 𝑦 ∈ (𝐵 ∪ (𝐴 ∖ 𝐵))) |
21 | 19, 20 | syl 14 |
. . . . . 6
⊢ ((((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝐵) → 𝑦 ∈ (𝐵 ∪ (𝐴 ∖ 𝐵))) |
22 | | eleq1 2229 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
23 | 22 | dcbid 828 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (DECID 𝑥 ∈ 𝐵 ↔ DECID 𝑦 ∈ 𝐵)) |
24 | | simplr 520 |
. . . . . . . 8
⊢ (((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) → ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) |
25 | | simpr 109 |
. . . . . . . 8
⊢ (((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
26 | 23, 24, 25 | rspcdva 2835 |
. . . . . . 7
⊢ (((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) → DECID 𝑦 ∈ 𝐵) |
27 | | exmiddc 826 |
. . . . . . 7
⊢
(DECID 𝑦 ∈ 𝐵 → (𝑦 ∈ 𝐵 ∨ ¬ 𝑦 ∈ 𝐵)) |
28 | 26, 27 | syl 14 |
. . . . . 6
⊢ (((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) → (𝑦 ∈ 𝐵 ∨ ¬ 𝑦 ∈ 𝐵)) |
29 | 16, 21, 28 | mpjaodan 788 |
. . . . 5
⊢ (((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ (𝐵 ∪ (𝐴 ∖ 𝐵))) |
30 | 29 | ex 114 |
. . . 4
⊢ ((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → (𝑦 ∈ 𝐴 → 𝑦 ∈ (𝐵 ∪ (𝐴 ∖ 𝐵)))) |
31 | 30 | ssrdv 3148 |
. . 3
⊢ ((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → 𝐴 ⊆ (𝐵 ∪ (𝐴 ∖ 𝐵))) |
32 | 2 | biimpi 119 |
. . . 4
⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∪ (𝐴 ∖ 𝐵)) ⊆ 𝐴) |
33 | 32 | adantr 274 |
. . 3
⊢ ((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → (𝐵 ∪ (𝐴 ∖ 𝐵)) ⊆ 𝐴) |
34 | 31, 33 | eqssd 3159 |
. 2
⊢ ((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → 𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵))) |
35 | 14, 34 | impbii 125 |
1
⊢ (𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵)) |