| Step | Hyp | Ref
| Expression |
| 1 | | eqimss2 3238 |
. . . 4
⊢ (𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) → (𝐵 ∪ (𝐴 ∖ 𝐵)) ⊆ 𝐴) |
| 2 | | undifss 3531 |
. . . 4
⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∪ (𝐴 ∖ 𝐵)) ⊆ 𝐴) |
| 3 | 1, 2 | sylibr 134 |
. . 3
⊢ (𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) → 𝐵 ⊆ 𝐴) |
| 4 | | eleq2 2260 |
. . . . . . . 8
⊢ (𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐵 ∪ (𝐴 ∖ 𝐵)))) |
| 5 | 4 | biimpa 296 |
. . . . . . 7
⊢ ((𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (𝐵 ∪ (𝐴 ∖ 𝐵))) |
| 6 | | elun 3304 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐵 ∪ (𝐴 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ (𝐴 ∖ 𝐵))) |
| 7 | 5, 6 | sylib 122 |
. . . . . 6
⊢ ((𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ (𝐴 ∖ 𝐵))) |
| 8 | | eldifn 3286 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) → ¬ 𝑥 ∈ 𝐵) |
| 9 | 8 | orim2i 762 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵 ∨ 𝑥 ∈ (𝐴 ∖ 𝐵)) → (𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ 𝐵)) |
| 10 | 7, 9 | syl 14 |
. . . . 5
⊢ ((𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ 𝐵)) |
| 11 | | df-dc 836 |
. . . . 5
⊢
(DECID 𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ 𝐵)) |
| 12 | 10, 11 | sylibr 134 |
. . . 4
⊢ ((𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) ∧ 𝑥 ∈ 𝐴) → DECID 𝑥 ∈ 𝐵) |
| 13 | 12 | ralrimiva 2570 |
. . 3
⊢ (𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) → ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) |
| 14 | 3, 13 | jca 306 |
. 2
⊢ (𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) → (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵)) |
| 15 | | elun1 3330 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐵 → 𝑦 ∈ (𝐵 ∪ (𝐴 ∖ 𝐵))) |
| 16 | 15 | adantl 277 |
. . . . . 6
⊢ ((((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ (𝐵 ∪ (𝐴 ∖ 𝐵))) |
| 17 | | simplr 528 |
. . . . . . . 8
⊢ ((((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐴) |
| 18 | | simpr 110 |
. . . . . . . 8
⊢ ((((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝐵) → ¬ 𝑦 ∈ 𝐵) |
| 19 | 17, 18 | eldifd 3167 |
. . . . . . 7
⊢ ((((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝐵) → 𝑦 ∈ (𝐴 ∖ 𝐵)) |
| 20 | | elun2 3331 |
. . . . . . 7
⊢ (𝑦 ∈ (𝐴 ∖ 𝐵) → 𝑦 ∈ (𝐵 ∪ (𝐴 ∖ 𝐵))) |
| 21 | 19, 20 | syl 14 |
. . . . . 6
⊢ ((((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝐵) → 𝑦 ∈ (𝐵 ∪ (𝐴 ∖ 𝐵))) |
| 22 | | eleq1 2259 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
| 23 | 22 | dcbid 839 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (DECID 𝑥 ∈ 𝐵 ↔ DECID 𝑦 ∈ 𝐵)) |
| 24 | | simplr 528 |
. . . . . . . 8
⊢ (((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) → ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) |
| 25 | | simpr 110 |
. . . . . . . 8
⊢ (((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
| 26 | 23, 24, 25 | rspcdva 2873 |
. . . . . . 7
⊢ (((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) → DECID 𝑦 ∈ 𝐵) |
| 27 | | exmiddc 837 |
. . . . . . 7
⊢
(DECID 𝑦 ∈ 𝐵 → (𝑦 ∈ 𝐵 ∨ ¬ 𝑦 ∈ 𝐵)) |
| 28 | 26, 27 | syl 14 |
. . . . . 6
⊢ (((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) → (𝑦 ∈ 𝐵 ∨ ¬ 𝑦 ∈ 𝐵)) |
| 29 | 16, 21, 28 | mpjaodan 799 |
. . . . 5
⊢ (((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ (𝐵 ∪ (𝐴 ∖ 𝐵))) |
| 30 | 29 | ex 115 |
. . . 4
⊢ ((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → (𝑦 ∈ 𝐴 → 𝑦 ∈ (𝐵 ∪ (𝐴 ∖ 𝐵)))) |
| 31 | 30 | ssrdv 3189 |
. . 3
⊢ ((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → 𝐴 ⊆ (𝐵 ∪ (𝐴 ∖ 𝐵))) |
| 32 | 2 | biimpi 120 |
. . . 4
⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∪ (𝐴 ∖ 𝐵)) ⊆ 𝐴) |
| 33 | 32 | adantr 276 |
. . 3
⊢ ((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → (𝐵 ∪ (𝐴 ∖ 𝐵)) ⊆ 𝐴) |
| 34 | 31, 33 | eqssd 3200 |
. 2
⊢ ((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → 𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵))) |
| 35 | 14, 34 | impbii 126 |
1
⊢ (𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵)) |