ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemv GIF version

Theorem acexmidlemv 5704
Description: Lemma for acexmid 5705.

This is acexmid 5705 with additional distinct variable constraints, most notably between 𝜑 and 𝑥.

(Contributed by Jim Kingdon, 6-Aug-2019.)

Hypothesis
Ref Expression
acexmidlemv.choice 𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)
Assertion
Ref Expression
acexmidlemv (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦,𝑧,𝑤,𝑣,𝑢

Proof of Theorem acexmidlemv
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onsucelsucexmidlem 4382 . . . 4 {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)} ∈ On
2 pp0ex 4053 . . . . 5 {∅, {∅}} ∈ V
32rabex 4012 . . . 4 {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)} ∈ V
4 prexg 4071 . . . 4 (({𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)} ∈ On ∧ {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)} ∈ V) → {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}} ∈ V)
51, 3, 4mp2an 420 . . 3 {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}} ∈ V
6 raleq 2584 . . . 4 (𝑥 = {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}} → (∀𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∀𝑧 ∈ {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}}∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
76exbidv 1764 . . 3 (𝑥 = {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}} → (∃𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃𝑦𝑧 ∈ {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}}∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
8 acexmidlemv.choice . . 3 𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)
95, 7, 8vtocl 2695 . 2 𝑦𝑧 ∈ {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}}∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)
10 eqeq1 2106 . . . . . 6 (𝑠 = 𝑡 → (𝑠 = ∅ ↔ 𝑡 = ∅))
1110orbi1d 746 . . . . 5 (𝑠 = 𝑡 → ((𝑠 = ∅ ∨ 𝜑) ↔ (𝑡 = ∅ ∨ 𝜑)))
1211cbvrabv 2640 . . . 4 {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)} = {𝑡 ∈ {∅, {∅}} ∣ (𝑡 = ∅ ∨ 𝜑)}
13 eqeq1 2106 . . . . . 6 (𝑠 = 𝑡 → (𝑠 = {∅} ↔ 𝑡 = {∅}))
1413orbi1d 746 . . . . 5 (𝑠 = 𝑡 → ((𝑠 = {∅} ∨ 𝜑) ↔ (𝑡 = {∅} ∨ 𝜑)))
1514cbvrabv 2640 . . . 4 {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)} = {𝑡 ∈ {∅, {∅}} ∣ (𝑡 = {∅} ∨ 𝜑)}
16 eqid 2100 . . . 4 {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}} = {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}}
1712, 15, 16acexmidlem2 5703 . . 3 (∀𝑧 ∈ {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}}∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝜑 ∨ ¬ 𝜑))
1817exlimiv 1545 . 2 (∃𝑦𝑧 ∈ {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}}∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝜑 ∨ ¬ 𝜑))
199, 18ax-mp 7 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wo 670   = wceq 1299  wex 1436  wcel 1448  wral 2375  wrex 2376  ∃!wreu 2377  {crab 2379  Vcvv 2641  c0 3310  {csn 3474  {cpr 3475  Oncon0 4223
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-uni 3684  df-tr 3967  df-iord 4226  df-on 4228  df-suc 4231  df-iota 5024  df-riota 5662
This theorem is referenced by:  acexmid  5705
  Copyright terms: Public domain W3C validator