ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemv GIF version

Theorem acexmidlemv 5998
Description: Lemma for acexmid 5999.

This is acexmid 5999 with additional disjoint variable conditions, most notably between 𝜑 and 𝑥.

(Contributed by Jim Kingdon, 6-Aug-2019.)

Hypothesis
Ref Expression
acexmidlemv.choice 𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)
Assertion
Ref Expression
acexmidlemv (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦,𝑧,𝑤,𝑣,𝑢

Proof of Theorem acexmidlemv
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onsucelsucexmidlem 4620 . . . 4 {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)} ∈ On
2 pp0ex 4272 . . . . 5 {∅, {∅}} ∈ V
32rabex 4227 . . . 4 {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)} ∈ V
4 prexg 4294 . . . 4 (({𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)} ∈ On ∧ {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)} ∈ V) → {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}} ∈ V)
51, 3, 4mp2an 426 . . 3 {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}} ∈ V
6 raleq 2728 . . . 4 (𝑥 = {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}} → (∀𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∀𝑧 ∈ {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}}∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
76exbidv 1871 . . 3 (𝑥 = {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}} → (∃𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃𝑦𝑧 ∈ {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}}∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
8 acexmidlemv.choice . . 3 𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)
95, 7, 8vtocl 2855 . 2 𝑦𝑧 ∈ {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}}∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)
10 eqeq1 2236 . . . . . 6 (𝑠 = 𝑡 → (𝑠 = ∅ ↔ 𝑡 = ∅))
1110orbi1d 796 . . . . 5 (𝑠 = 𝑡 → ((𝑠 = ∅ ∨ 𝜑) ↔ (𝑡 = ∅ ∨ 𝜑)))
1211cbvrabv 2798 . . . 4 {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)} = {𝑡 ∈ {∅, {∅}} ∣ (𝑡 = ∅ ∨ 𝜑)}
13 eqeq1 2236 . . . . . 6 (𝑠 = 𝑡 → (𝑠 = {∅} ↔ 𝑡 = {∅}))
1413orbi1d 796 . . . . 5 (𝑠 = 𝑡 → ((𝑠 = {∅} ∨ 𝜑) ↔ (𝑡 = {∅} ∨ 𝜑)))
1514cbvrabv 2798 . . . 4 {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)} = {𝑡 ∈ {∅, {∅}} ∣ (𝑡 = {∅} ∨ 𝜑)}
16 eqid 2229 . . . 4 {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}} = {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}}
1712, 15, 16acexmidlem2 5997 . . 3 (∀𝑧 ∈ {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}}∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝜑 ∨ ¬ 𝜑))
1817exlimiv 1644 . 2 (∃𝑦𝑧 ∈ {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}}∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝜑 ∨ ¬ 𝜑))
199, 18ax-mp 5 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wo 713   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  ∃!wreu 2510  {crab 2512  Vcvv 2799  c0 3491  {csn 3666  {cpr 3667  Oncon0 4453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-tr 4182  df-iord 4456  df-on 4458  df-suc 4461  df-iota 5277  df-riota 5953
This theorem is referenced by:  acexmid  5999
  Copyright terms: Public domain W3C validator