Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvmptss2 | GIF version |
Description: A mapping always evaluates to a subset of the substituted expression in the mapping, even if this is a proper class, or we are out of the domain. (Contributed by Mario Carneiro, 13-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2019.) |
Ref | Expression |
---|---|
fvmptss2.1 | ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) |
fvmptss2.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptss2 | ⊢ (𝐹‘𝐷) ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvss 5500 | . 2 ⊢ (∀𝑦(𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶) → (𝐹‘𝐷) ⊆ 𝐶) | |
2 | fvmptss2.2 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | funmpt2 5227 | . . . . 5 ⊢ Fun 𝐹 |
4 | funrel 5205 | . . . . 5 ⊢ (Fun 𝐹 → Rel 𝐹) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ Rel 𝐹 |
6 | 5 | brrelex1i 4647 | . . 3 ⊢ (𝐷𝐹𝑦 → 𝐷 ∈ V) |
7 | nfcv 2308 | . . . 4 ⊢ Ⅎ𝑥𝐷 | |
8 | nfmpt1 4075 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
9 | 2, 8 | nfcxfr 2305 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 |
10 | nfcv 2308 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
11 | 7, 9, 10 | nfbr 4028 | . . . . 5 ⊢ Ⅎ𝑥 𝐷𝐹𝑦 |
12 | nfv 1516 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ⊆ 𝐶 | |
13 | 11, 12 | nfim 1560 | . . . 4 ⊢ Ⅎ𝑥(𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶) |
14 | breq1 3985 | . . . . 5 ⊢ (𝑥 = 𝐷 → (𝑥𝐹𝑦 ↔ 𝐷𝐹𝑦)) | |
15 | fvmptss2.1 | . . . . . 6 ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) | |
16 | 15 | sseq2d 3172 | . . . . 5 ⊢ (𝑥 = 𝐷 → (𝑦 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐶)) |
17 | 14, 16 | imbi12d 233 | . . . 4 ⊢ (𝑥 = 𝐷 → ((𝑥𝐹𝑦 → 𝑦 ⊆ 𝐵) ↔ (𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶))) |
18 | df-br 3983 | . . . . 5 ⊢ (𝑥𝐹𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐹) | |
19 | opabid 4235 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) | |
20 | eqimss 3196 | . . . . . . . 8 ⊢ (𝑦 = 𝐵 → 𝑦 ⊆ 𝐵) | |
21 | 20 | adantl 275 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 ⊆ 𝐵) |
22 | 19, 21 | sylbi 120 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} → 𝑦 ⊆ 𝐵) |
23 | df-mpt 4045 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
24 | 2, 23 | eqtri 2186 | . . . . . 6 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
25 | 22, 24 | eleq2s 2261 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐹 → 𝑦 ⊆ 𝐵) |
26 | 18, 25 | sylbi 120 | . . . 4 ⊢ (𝑥𝐹𝑦 → 𝑦 ⊆ 𝐵) |
27 | 7, 13, 17, 26 | vtoclgf 2784 | . . 3 ⊢ (𝐷 ∈ V → (𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶)) |
28 | 6, 27 | mpcom 36 | . 2 ⊢ (𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶) |
29 | 1, 28 | mpg 1439 | 1 ⊢ (𝐹‘𝐷) ⊆ 𝐶 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 〈cop 3579 class class class wbr 3982 {copab 4042 ↦ cmpt 4043 Rel wrel 4609 Fun wfun 5182 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-iota 5153 df-fun 5190 df-fv 5196 |
This theorem is referenced by: mptfvex 5571 |
Copyright terms: Public domain | W3C validator |