Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvmptss2 | GIF version |
Description: A mapping always evaluates to a subset of the substituted expression in the mapping, even if this is a proper class, or we are out of the domain. (Contributed by Mario Carneiro, 13-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2019.) |
Ref | Expression |
---|---|
fvmptss2.1 | ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) |
fvmptss2.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptss2 | ⊢ (𝐹‘𝐷) ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvss 5510 | . 2 ⊢ (∀𝑦(𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶) → (𝐹‘𝐷) ⊆ 𝐶) | |
2 | fvmptss2.2 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | funmpt2 5237 | . . . . 5 ⊢ Fun 𝐹 |
4 | funrel 5215 | . . . . 5 ⊢ (Fun 𝐹 → Rel 𝐹) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ Rel 𝐹 |
6 | 5 | brrelex1i 4654 | . . 3 ⊢ (𝐷𝐹𝑦 → 𝐷 ∈ V) |
7 | nfcv 2312 | . . . 4 ⊢ Ⅎ𝑥𝐷 | |
8 | nfmpt1 4082 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
9 | 2, 8 | nfcxfr 2309 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 |
10 | nfcv 2312 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
11 | 7, 9, 10 | nfbr 4035 | . . . . 5 ⊢ Ⅎ𝑥 𝐷𝐹𝑦 |
12 | nfv 1521 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ⊆ 𝐶 | |
13 | 11, 12 | nfim 1565 | . . . 4 ⊢ Ⅎ𝑥(𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶) |
14 | breq1 3992 | . . . . 5 ⊢ (𝑥 = 𝐷 → (𝑥𝐹𝑦 ↔ 𝐷𝐹𝑦)) | |
15 | fvmptss2.1 | . . . . . 6 ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) | |
16 | 15 | sseq2d 3177 | . . . . 5 ⊢ (𝑥 = 𝐷 → (𝑦 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐶)) |
17 | 14, 16 | imbi12d 233 | . . . 4 ⊢ (𝑥 = 𝐷 → ((𝑥𝐹𝑦 → 𝑦 ⊆ 𝐵) ↔ (𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶))) |
18 | df-br 3990 | . . . . 5 ⊢ (𝑥𝐹𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐹) | |
19 | opabid 4242 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) | |
20 | eqimss 3201 | . . . . . . . 8 ⊢ (𝑦 = 𝐵 → 𝑦 ⊆ 𝐵) | |
21 | 20 | adantl 275 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 ⊆ 𝐵) |
22 | 19, 21 | sylbi 120 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} → 𝑦 ⊆ 𝐵) |
23 | df-mpt 4052 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
24 | 2, 23 | eqtri 2191 | . . . . . 6 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
25 | 22, 24 | eleq2s 2265 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐹 → 𝑦 ⊆ 𝐵) |
26 | 18, 25 | sylbi 120 | . . . 4 ⊢ (𝑥𝐹𝑦 → 𝑦 ⊆ 𝐵) |
27 | 7, 13, 17, 26 | vtoclgf 2788 | . . 3 ⊢ (𝐷 ∈ V → (𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶)) |
28 | 6, 27 | mpcom 36 | . 2 ⊢ (𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶) |
29 | 1, 28 | mpg 1444 | 1 ⊢ (𝐹‘𝐷) ⊆ 𝐶 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ⊆ wss 3121 〈cop 3586 class class class wbr 3989 {copab 4049 ↦ cmpt 4050 Rel wrel 4616 Fun wfun 5192 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-iota 5160 df-fun 5200 df-fv 5206 |
This theorem is referenced by: mptfvex 5581 |
Copyright terms: Public domain | W3C validator |