| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fvmptss2 | GIF version | ||
| Description: A mapping always evaluates to a subset of the substituted expression in the mapping, even if this is a proper class, or we are out of the domain. (Contributed by Mario Carneiro, 13-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2019.) | 
| Ref | Expression | 
|---|---|
| fvmptss2.1 | ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) | 
| fvmptss2.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | 
| Ref | Expression | 
|---|---|
| fvmptss2 | ⊢ (𝐹‘𝐷) ⊆ 𝐶 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fvss 5572 | . 2 ⊢ (∀𝑦(𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶) → (𝐹‘𝐷) ⊆ 𝐶) | |
| 2 | fvmptss2.2 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 2 | funmpt2 5297 | . . . . 5 ⊢ Fun 𝐹 | 
| 4 | funrel 5275 | . . . . 5 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ Rel 𝐹 | 
| 6 | 5 | brrelex1i 4706 | . . 3 ⊢ (𝐷𝐹𝑦 → 𝐷 ∈ V) | 
| 7 | nfcv 2339 | . . . 4 ⊢ Ⅎ𝑥𝐷 | |
| 8 | nfmpt1 4126 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 9 | 2, 8 | nfcxfr 2336 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | 
| 10 | nfcv 2339 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
| 11 | 7, 9, 10 | nfbr 4079 | . . . . 5 ⊢ Ⅎ𝑥 𝐷𝐹𝑦 | 
| 12 | nfv 1542 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ⊆ 𝐶 | |
| 13 | 11, 12 | nfim 1586 | . . . 4 ⊢ Ⅎ𝑥(𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶) | 
| 14 | breq1 4036 | . . . . 5 ⊢ (𝑥 = 𝐷 → (𝑥𝐹𝑦 ↔ 𝐷𝐹𝑦)) | |
| 15 | fvmptss2.1 | . . . . . 6 ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) | |
| 16 | 15 | sseq2d 3213 | . . . . 5 ⊢ (𝑥 = 𝐷 → (𝑦 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐶)) | 
| 17 | 14, 16 | imbi12d 234 | . . . 4 ⊢ (𝑥 = 𝐷 → ((𝑥𝐹𝑦 → 𝑦 ⊆ 𝐵) ↔ (𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶))) | 
| 18 | df-br 4034 | . . . . 5 ⊢ (𝑥𝐹𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐹) | |
| 19 | opabid 4290 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) | |
| 20 | eqimss 3237 | . . . . . . . 8 ⊢ (𝑦 = 𝐵 → 𝑦 ⊆ 𝐵) | |
| 21 | 20 | adantl 277 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 ⊆ 𝐵) | 
| 22 | 19, 21 | sylbi 121 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} → 𝑦 ⊆ 𝐵) | 
| 23 | df-mpt 4096 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 24 | 2, 23 | eqtri 2217 | . . . . . 6 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | 
| 25 | 22, 24 | eleq2s 2291 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐹 → 𝑦 ⊆ 𝐵) | 
| 26 | 18, 25 | sylbi 121 | . . . 4 ⊢ (𝑥𝐹𝑦 → 𝑦 ⊆ 𝐵) | 
| 27 | 7, 13, 17, 26 | vtoclgf 2822 | . . 3 ⊢ (𝐷 ∈ V → (𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶)) | 
| 28 | 6, 27 | mpcom 36 | . 2 ⊢ (𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶) | 
| 29 | 1, 28 | mpg 1465 | 1 ⊢ (𝐹‘𝐷) ⊆ 𝐶 | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 〈cop 3625 class class class wbr 4033 {copab 4093 ↦ cmpt 4094 Rel wrel 4668 Fun wfun 5252 ‘cfv 5258 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-iota 5219 df-fun 5260 df-fv 5266 | 
| This theorem is referenced by: mptfvex 5647 | 
| Copyright terms: Public domain | W3C validator |