Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvmptss2 | GIF version |
Description: A mapping always evaluates to a subset of the substituted expression in the mapping, even if this is a proper class, or we are out of the domain. (Contributed by Mario Carneiro, 13-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2019.) |
Ref | Expression |
---|---|
fvmptss2.1 | ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) |
fvmptss2.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptss2 | ⊢ (𝐹‘𝐷) ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvss 5482 | . 2 ⊢ (∀𝑦(𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶) → (𝐹‘𝐷) ⊆ 𝐶) | |
2 | fvmptss2.2 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | funmpt2 5209 | . . . . 5 ⊢ Fun 𝐹 |
4 | funrel 5187 | . . . . 5 ⊢ (Fun 𝐹 → Rel 𝐹) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ Rel 𝐹 |
6 | 5 | brrelex1i 4629 | . . 3 ⊢ (𝐷𝐹𝑦 → 𝐷 ∈ V) |
7 | nfcv 2299 | . . . 4 ⊢ Ⅎ𝑥𝐷 | |
8 | nfmpt1 4057 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
9 | 2, 8 | nfcxfr 2296 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 |
10 | nfcv 2299 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
11 | 7, 9, 10 | nfbr 4010 | . . . . 5 ⊢ Ⅎ𝑥 𝐷𝐹𝑦 |
12 | nfv 1508 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ⊆ 𝐶 | |
13 | 11, 12 | nfim 1552 | . . . 4 ⊢ Ⅎ𝑥(𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶) |
14 | breq1 3968 | . . . . 5 ⊢ (𝑥 = 𝐷 → (𝑥𝐹𝑦 ↔ 𝐷𝐹𝑦)) | |
15 | fvmptss2.1 | . . . . . 6 ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) | |
16 | 15 | sseq2d 3158 | . . . . 5 ⊢ (𝑥 = 𝐷 → (𝑦 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐶)) |
17 | 14, 16 | imbi12d 233 | . . . 4 ⊢ (𝑥 = 𝐷 → ((𝑥𝐹𝑦 → 𝑦 ⊆ 𝐵) ↔ (𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶))) |
18 | df-br 3966 | . . . . 5 ⊢ (𝑥𝐹𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐹) | |
19 | opabid 4217 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) | |
20 | eqimss 3182 | . . . . . . . 8 ⊢ (𝑦 = 𝐵 → 𝑦 ⊆ 𝐵) | |
21 | 20 | adantl 275 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 ⊆ 𝐵) |
22 | 19, 21 | sylbi 120 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} → 𝑦 ⊆ 𝐵) |
23 | df-mpt 4027 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
24 | 2, 23 | eqtri 2178 | . . . . . 6 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
25 | 22, 24 | eleq2s 2252 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐹 → 𝑦 ⊆ 𝐵) |
26 | 18, 25 | sylbi 120 | . . . 4 ⊢ (𝑥𝐹𝑦 → 𝑦 ⊆ 𝐵) |
27 | 7, 13, 17, 26 | vtoclgf 2770 | . . 3 ⊢ (𝐷 ∈ V → (𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶)) |
28 | 6, 27 | mpcom 36 | . 2 ⊢ (𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶) |
29 | 1, 28 | mpg 1431 | 1 ⊢ (𝐹‘𝐷) ⊆ 𝐶 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 Vcvv 2712 ⊆ wss 3102 〈cop 3563 class class class wbr 3965 {copab 4024 ↦ cmpt 4025 Rel wrel 4591 Fun wfun 5164 ‘cfv 5170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-iota 5135 df-fun 5172 df-fv 5178 |
This theorem is referenced by: mptfvex 5553 |
Copyright terms: Public domain | W3C validator |