MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem5 Structured version   Visualization version   GIF version

Theorem ltexprlem5 11078
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
Assertion
Ref Expression
ltexprlem5 ((𝐵P𝐴𝐵) → 𝐶P)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ltexprlem5
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . 5 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
21ltexprlem1 11074 . . . 4 (𝐵P → (𝐴𝐵𝐶 ≠ ∅))
3 0pss 4453 . . . 4 (∅ ⊊ 𝐶𝐶 ≠ ∅)
42, 3imbitrrdi 252 . . 3 (𝐵P → (𝐴𝐵 → ∅ ⊊ 𝐶))
54imp 406 . 2 ((𝐵P𝐴𝐵) → ∅ ⊊ 𝐶)
61ltexprlem2 11075 . . 3 (𝐵P𝐶Q)
76adantr 480 . 2 ((𝐵P𝐴𝐵) → 𝐶Q)
81ltexprlem3 11076 . . . . 5 (𝐵P → (𝑥𝐶 → ∀𝑧(𝑧 <Q 𝑥𝑧𝐶)))
91ltexprlem4 11077 . . . . . 6 (𝐵P → (𝑥𝐶 → ∃𝑧(𝑧𝐶𝑥 <Q 𝑧)))
10 df-rex 3069 . . . . . 6 (∃𝑧𝐶 𝑥 <Q 𝑧 ↔ ∃𝑧(𝑧𝐶𝑥 <Q 𝑧))
119, 10imbitrrdi 252 . . . . 5 (𝐵P → (𝑥𝐶 → ∃𝑧𝐶 𝑥 <Q 𝑧))
128, 11jcad 512 . . . 4 (𝐵P → (𝑥𝐶 → (∀𝑧(𝑧 <Q 𝑥𝑧𝐶) ∧ ∃𝑧𝐶 𝑥 <Q 𝑧)))
1312ralrimiv 3143 . . 3 (𝐵P → ∀𝑥𝐶 (∀𝑧(𝑧 <Q 𝑥𝑧𝐶) ∧ ∃𝑧𝐶 𝑥 <Q 𝑧))
1413adantr 480 . 2 ((𝐵P𝐴𝐵) → ∀𝑥𝐶 (∀𝑧(𝑧 <Q 𝑥𝑧𝐶) ∧ ∃𝑧𝐶 𝑥 <Q 𝑧))
15 elnp 11025 . 2 (𝐶P ↔ ((∅ ⊊ 𝐶𝐶Q) ∧ ∀𝑥𝐶 (∀𝑧(𝑧 <Q 𝑥𝑧𝐶) ∧ ∃𝑧𝐶 𝑥 <Q 𝑧)))
165, 7, 14, 15syl21anbrc 1343 1 ((𝐵P𝐴𝐵) → 𝐶P)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1535   = wceq 1537  wex 1776  wcel 2106  {cab 2712  wne 2938  wral 3059  wrex 3068  wpss 3964  c0 4339   class class class wbr 5148  (class class class)co 7431  Qcnq 10890   +Q cplq 10893   <Q cltq 10896  Pcnp 10897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-omul 8510  df-er 8744  df-ni 10910  df-pli 10911  df-mi 10912  df-lti 10913  df-plpq 10946  df-mpq 10947  df-ltpq 10948  df-enq 10949  df-nq 10950  df-erq 10951  df-plq 10952  df-mq 10953  df-1nq 10954  df-ltnq 10956  df-np 11019
This theorem is referenced by:  ltexprlem6  11079  ltexprlem7  11080  ltexpri  11081
  Copyright terms: Public domain W3C validator