| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltexprlem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltexprlem.1 | ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} |
| Ref | Expression |
|---|---|
| ltexprlem5 | ⊢ ((𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵) → 𝐶 ∈ P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltexprlem.1 | . . . . 5 ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} | |
| 2 | 1 | ltexprlem1 10965 | . . . 4 ⊢ (𝐵 ∈ P → (𝐴 ⊊ 𝐵 → 𝐶 ≠ ∅)) |
| 3 | 0pss 4406 | . . . 4 ⊢ (∅ ⊊ 𝐶 ↔ 𝐶 ≠ ∅) | |
| 4 | 2, 3 | imbitrrdi 252 | . . 3 ⊢ (𝐵 ∈ P → (𝐴 ⊊ 𝐵 → ∅ ⊊ 𝐶)) |
| 5 | 4 | imp 406 | . 2 ⊢ ((𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵) → ∅ ⊊ 𝐶) |
| 6 | 1 | ltexprlem2 10966 | . . 3 ⊢ (𝐵 ∈ P → 𝐶 ⊊ Q) |
| 7 | 6 | adantr 480 | . 2 ⊢ ((𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵) → 𝐶 ⊊ Q) |
| 8 | 1 | ltexprlem3 10967 | . . . . 5 ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → ∀𝑧(𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶))) |
| 9 | 1 | ltexprlem4 10968 | . . . . . 6 ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → ∃𝑧(𝑧 ∈ 𝐶 ∧ 𝑥 <Q 𝑧))) |
| 10 | df-rex 3054 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐶 𝑥 <Q 𝑧 ↔ ∃𝑧(𝑧 ∈ 𝐶 ∧ 𝑥 <Q 𝑧)) | |
| 11 | 9, 10 | imbitrrdi 252 | . . . . 5 ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → ∃𝑧 ∈ 𝐶 𝑥 <Q 𝑧)) |
| 12 | 8, 11 | jcad 512 | . . . 4 ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → (∀𝑧(𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶) ∧ ∃𝑧 ∈ 𝐶 𝑥 <Q 𝑧))) |
| 13 | 12 | ralrimiv 3124 | . . 3 ⊢ (𝐵 ∈ P → ∀𝑥 ∈ 𝐶 (∀𝑧(𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶) ∧ ∃𝑧 ∈ 𝐶 𝑥 <Q 𝑧)) |
| 14 | 13 | adantr 480 | . 2 ⊢ ((𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵) → ∀𝑥 ∈ 𝐶 (∀𝑧(𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶) ∧ ∃𝑧 ∈ 𝐶 𝑥 <Q 𝑧)) |
| 15 | elnp 10916 | . 2 ⊢ (𝐶 ∈ P ↔ ((∅ ⊊ 𝐶 ∧ 𝐶 ⊊ Q) ∧ ∀𝑥 ∈ 𝐶 (∀𝑧(𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶) ∧ ∃𝑧 ∈ 𝐶 𝑥 <Q 𝑧))) | |
| 16 | 5, 7, 14, 15 | syl21anbrc 1345 | 1 ⊢ ((𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵) → 𝐶 ∈ P) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ⊊ wpss 3912 ∅c0 4292 class class class wbr 5102 (class class class)co 7369 Qcnq 10781 +Q cplq 10784 <Q cltq 10787 Pcnp 10788 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-omul 8416 df-er 8648 df-ni 10801 df-pli 10802 df-mi 10803 df-lti 10804 df-plpq 10837 df-mpq 10838 df-ltpq 10839 df-enq 10840 df-nq 10841 df-erq 10842 df-plq 10843 df-mq 10844 df-1nq 10845 df-ltnq 10847 df-np 10910 |
| This theorem is referenced by: ltexprlem6 10970 ltexprlem7 10971 ltexpri 10972 |
| Copyright terms: Public domain | W3C validator |