MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem5 Structured version   Visualization version   GIF version

Theorem ltexprlem5 10926
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
Assertion
Ref Expression
ltexprlem5 ((𝐵P𝐴𝐵) → 𝐶P)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ltexprlem5
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . 5 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
21ltexprlem1 10922 . . . 4 (𝐵P → (𝐴𝐵𝐶 ≠ ∅))
3 0pss 4392 . . . 4 (∅ ⊊ 𝐶𝐶 ≠ ∅)
42, 3imbitrrdi 252 . . 3 (𝐵P → (𝐴𝐵 → ∅ ⊊ 𝐶))
54imp 406 . 2 ((𝐵P𝐴𝐵) → ∅ ⊊ 𝐶)
61ltexprlem2 10923 . . 3 (𝐵P𝐶Q)
76adantr 480 . 2 ((𝐵P𝐴𝐵) → 𝐶Q)
81ltexprlem3 10924 . . . . 5 (𝐵P → (𝑥𝐶 → ∀𝑧(𝑧 <Q 𝑥𝑧𝐶)))
91ltexprlem4 10925 . . . . . 6 (𝐵P → (𝑥𝐶 → ∃𝑧(𝑧𝐶𝑥 <Q 𝑧)))
10 df-rex 3057 . . . . . 6 (∃𝑧𝐶 𝑥 <Q 𝑧 ↔ ∃𝑧(𝑧𝐶𝑥 <Q 𝑧))
119, 10imbitrrdi 252 . . . . 5 (𝐵P → (𝑥𝐶 → ∃𝑧𝐶 𝑥 <Q 𝑧))
128, 11jcad 512 . . . 4 (𝐵P → (𝑥𝐶 → (∀𝑧(𝑧 <Q 𝑥𝑧𝐶) ∧ ∃𝑧𝐶 𝑥 <Q 𝑧)))
1312ralrimiv 3123 . . 3 (𝐵P → ∀𝑥𝐶 (∀𝑧(𝑧 <Q 𝑥𝑧𝐶) ∧ ∃𝑧𝐶 𝑥 <Q 𝑧))
1413adantr 480 . 2 ((𝐵P𝐴𝐵) → ∀𝑥𝐶 (∀𝑧(𝑧 <Q 𝑥𝑧𝐶) ∧ ∃𝑧𝐶 𝑥 <Q 𝑧))
15 elnp 10873 . 2 (𝐶P ↔ ((∅ ⊊ 𝐶𝐶Q) ∧ ∀𝑥𝐶 (∀𝑧(𝑧 <Q 𝑥𝑧𝐶) ∧ ∃𝑧𝐶 𝑥 <Q 𝑧)))
165, 7, 14, 15syl21anbrc 1345 1 ((𝐵P𝐴𝐵) → 𝐶P)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wne 2928  wral 3047  wrex 3056  wpss 3898  c0 4278   class class class wbr 5086  (class class class)co 7341  Qcnq 10738   +Q cplq 10741   <Q cltq 10744  Pcnp 10745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oadd 8384  df-omul 8385  df-er 8617  df-ni 10758  df-pli 10759  df-mi 10760  df-lti 10761  df-plpq 10794  df-mpq 10795  df-ltpq 10796  df-enq 10797  df-nq 10798  df-erq 10799  df-plq 10800  df-mq 10801  df-1nq 10802  df-ltnq 10804  df-np 10867
This theorem is referenced by:  ltexprlem6  10927  ltexprlem7  10928  ltexpri  10929
  Copyright terms: Public domain W3C validator