MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem5 Structured version   Visualization version   GIF version

Theorem ltexprlem5 10450
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
Assertion
Ref Expression
ltexprlem5 ((𝐵P𝐴𝐵) → 𝐶P)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ltexprlem5
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . 5 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
21ltexprlem1 10446 . . . 4 (𝐵P → (𝐴𝐵𝐶 ≠ ∅))
3 0pss 4392 . . . 4 (∅ ⊊ 𝐶𝐶 ≠ ∅)
42, 3syl6ibr 253 . . 3 (𝐵P → (𝐴𝐵 → ∅ ⊊ 𝐶))
54imp 407 . 2 ((𝐵P𝐴𝐵) → ∅ ⊊ 𝐶)
61ltexprlem2 10447 . . 3 (𝐵P𝐶Q)
76adantr 481 . 2 ((𝐵P𝐴𝐵) → 𝐶Q)
81ltexprlem3 10448 . . . . 5 (𝐵P → (𝑥𝐶 → ∀𝑧(𝑧 <Q 𝑥𝑧𝐶)))
91ltexprlem4 10449 . . . . . 6 (𝐵P → (𝑥𝐶 → ∃𝑧(𝑧𝐶𝑥 <Q 𝑧)))
10 df-rex 3141 . . . . . 6 (∃𝑧𝐶 𝑥 <Q 𝑧 ↔ ∃𝑧(𝑧𝐶𝑥 <Q 𝑧))
119, 10syl6ibr 253 . . . . 5 (𝐵P → (𝑥𝐶 → ∃𝑧𝐶 𝑥 <Q 𝑧))
128, 11jcad 513 . . . 4 (𝐵P → (𝑥𝐶 → (∀𝑧(𝑧 <Q 𝑥𝑧𝐶) ∧ ∃𝑧𝐶 𝑥 <Q 𝑧)))
1312ralrimiv 3178 . . 3 (𝐵P → ∀𝑥𝐶 (∀𝑧(𝑧 <Q 𝑥𝑧𝐶) ∧ ∃𝑧𝐶 𝑥 <Q 𝑧))
1413adantr 481 . 2 ((𝐵P𝐴𝐵) → ∀𝑥𝐶 (∀𝑧(𝑧 <Q 𝑥𝑧𝐶) ∧ ∃𝑧𝐶 𝑥 <Q 𝑧))
15 elnp 10397 . 2 (𝐶P ↔ ((∅ ⊊ 𝐶𝐶Q) ∧ ∀𝑥𝐶 (∀𝑧(𝑧 <Q 𝑥𝑧𝐶) ∧ ∃𝑧𝐶 𝑥 <Q 𝑧)))
165, 7, 14, 15syl21anbrc 1336 1 ((𝐵P𝐴𝐵) → 𝐶P)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wal 1526   = wceq 1528  wex 1771  wcel 2105  {cab 2796  wne 3013  wral 3135  wrex 3136  wpss 3934  c0 4288   class class class wbr 5057  (class class class)co 7145  Qcnq 10262   +Q cplq 10265   <Q cltq 10268  Pcnp 10269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-omul 8096  df-er 8278  df-ni 10282  df-pli 10283  df-mi 10284  df-lti 10285  df-plpq 10318  df-mpq 10319  df-ltpq 10320  df-enq 10321  df-nq 10322  df-erq 10323  df-plq 10324  df-mq 10325  df-1nq 10326  df-ltnq 10328  df-np 10391
This theorem is referenced by:  ltexprlem6  10451  ltexprlem7  10452  ltexpri  10453
  Copyright terms: Public domain W3C validator