MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem5 Structured version   Visualization version   GIF version

Theorem ltexprlem5 10780
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
Assertion
Ref Expression
ltexprlem5 ((𝐵P𝐴𝐵) → 𝐶P)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ltexprlem5
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . 5 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
21ltexprlem1 10776 . . . 4 (𝐵P → (𝐴𝐵𝐶 ≠ ∅))
3 0pss 4383 . . . 4 (∅ ⊊ 𝐶𝐶 ≠ ∅)
42, 3syl6ibr 251 . . 3 (𝐵P → (𝐴𝐵 → ∅ ⊊ 𝐶))
54imp 406 . 2 ((𝐵P𝐴𝐵) → ∅ ⊊ 𝐶)
61ltexprlem2 10777 . . 3 (𝐵P𝐶Q)
76adantr 480 . 2 ((𝐵P𝐴𝐵) → 𝐶Q)
81ltexprlem3 10778 . . . . 5 (𝐵P → (𝑥𝐶 → ∀𝑧(𝑧 <Q 𝑥𝑧𝐶)))
91ltexprlem4 10779 . . . . . 6 (𝐵P → (𝑥𝐶 → ∃𝑧(𝑧𝐶𝑥 <Q 𝑧)))
10 df-rex 3071 . . . . . 6 (∃𝑧𝐶 𝑥 <Q 𝑧 ↔ ∃𝑧(𝑧𝐶𝑥 <Q 𝑧))
119, 10syl6ibr 251 . . . . 5 (𝐵P → (𝑥𝐶 → ∃𝑧𝐶 𝑥 <Q 𝑧))
128, 11jcad 512 . . . 4 (𝐵P → (𝑥𝐶 → (∀𝑧(𝑧 <Q 𝑥𝑧𝐶) ∧ ∃𝑧𝐶 𝑥 <Q 𝑧)))
1312ralrimiv 3108 . . 3 (𝐵P → ∀𝑥𝐶 (∀𝑧(𝑧 <Q 𝑥𝑧𝐶) ∧ ∃𝑧𝐶 𝑥 <Q 𝑧))
1413adantr 480 . 2 ((𝐵P𝐴𝐵) → ∀𝑥𝐶 (∀𝑧(𝑧 <Q 𝑥𝑧𝐶) ∧ ∃𝑧𝐶 𝑥 <Q 𝑧))
15 elnp 10727 . 2 (𝐶P ↔ ((∅ ⊊ 𝐶𝐶Q) ∧ ∀𝑥𝐶 (∀𝑧(𝑧 <Q 𝑥𝑧𝐶) ∧ ∃𝑧𝐶 𝑥 <Q 𝑧)))
165, 7, 14, 15syl21anbrc 1342 1 ((𝐵P𝐴𝐵) → 𝐶P)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1539   = wceq 1541  wex 1785  wcel 2109  {cab 2716  wne 2944  wral 3065  wrex 3066  wpss 3892  c0 4261   class class class wbr 5078  (class class class)co 7268  Qcnq 10592   +Q cplq 10595   <Q cltq 10598  Pcnp 10599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-oadd 8285  df-omul 8286  df-er 8472  df-ni 10612  df-pli 10613  df-mi 10614  df-lti 10615  df-plpq 10648  df-mpq 10649  df-ltpq 10650  df-enq 10651  df-nq 10652  df-erq 10653  df-plq 10654  df-mq 10655  df-1nq 10656  df-ltnq 10658  df-np 10721
This theorem is referenced by:  ltexprlem6  10781  ltexprlem7  10782  ltexpri  10783
  Copyright terms: Public domain W3C validator