Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltexprlem5 | Structured version Visualization version GIF version |
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltexprlem.1 | ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} |
Ref | Expression |
---|---|
ltexprlem5 | ⊢ ((𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵) → 𝐶 ∈ P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltexprlem.1 | . . . . 5 ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} | |
2 | 1 | ltexprlem1 10776 | . . . 4 ⊢ (𝐵 ∈ P → (𝐴 ⊊ 𝐵 → 𝐶 ≠ ∅)) |
3 | 0pss 4383 | . . . 4 ⊢ (∅ ⊊ 𝐶 ↔ 𝐶 ≠ ∅) | |
4 | 2, 3 | syl6ibr 251 | . . 3 ⊢ (𝐵 ∈ P → (𝐴 ⊊ 𝐵 → ∅ ⊊ 𝐶)) |
5 | 4 | imp 406 | . 2 ⊢ ((𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵) → ∅ ⊊ 𝐶) |
6 | 1 | ltexprlem2 10777 | . . 3 ⊢ (𝐵 ∈ P → 𝐶 ⊊ Q) |
7 | 6 | adantr 480 | . 2 ⊢ ((𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵) → 𝐶 ⊊ Q) |
8 | 1 | ltexprlem3 10778 | . . . . 5 ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → ∀𝑧(𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶))) |
9 | 1 | ltexprlem4 10779 | . . . . . 6 ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → ∃𝑧(𝑧 ∈ 𝐶 ∧ 𝑥 <Q 𝑧))) |
10 | df-rex 3071 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐶 𝑥 <Q 𝑧 ↔ ∃𝑧(𝑧 ∈ 𝐶 ∧ 𝑥 <Q 𝑧)) | |
11 | 9, 10 | syl6ibr 251 | . . . . 5 ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → ∃𝑧 ∈ 𝐶 𝑥 <Q 𝑧)) |
12 | 8, 11 | jcad 512 | . . . 4 ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → (∀𝑧(𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶) ∧ ∃𝑧 ∈ 𝐶 𝑥 <Q 𝑧))) |
13 | 12 | ralrimiv 3108 | . . 3 ⊢ (𝐵 ∈ P → ∀𝑥 ∈ 𝐶 (∀𝑧(𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶) ∧ ∃𝑧 ∈ 𝐶 𝑥 <Q 𝑧)) |
14 | 13 | adantr 480 | . 2 ⊢ ((𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵) → ∀𝑥 ∈ 𝐶 (∀𝑧(𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶) ∧ ∃𝑧 ∈ 𝐶 𝑥 <Q 𝑧)) |
15 | elnp 10727 | . 2 ⊢ (𝐶 ∈ P ↔ ((∅ ⊊ 𝐶 ∧ 𝐶 ⊊ Q) ∧ ∀𝑥 ∈ 𝐶 (∀𝑧(𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶) ∧ ∃𝑧 ∈ 𝐶 𝑥 <Q 𝑧))) | |
16 | 5, 7, 14, 15 | syl21anbrc 1342 | 1 ⊢ ((𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵) → 𝐶 ∈ P) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1785 ∈ wcel 2109 {cab 2716 ≠ wne 2944 ∀wral 3065 ∃wrex 3066 ⊊ wpss 3892 ∅c0 4261 class class class wbr 5078 (class class class)co 7268 Qcnq 10592 +Q cplq 10595 <Q cltq 10598 Pcnp 10599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-oadd 8285 df-omul 8286 df-er 8472 df-ni 10612 df-pli 10613 df-mi 10614 df-lti 10615 df-plpq 10648 df-mpq 10649 df-ltpq 10650 df-enq 10651 df-nq 10652 df-erq 10653 df-plq 10654 df-mq 10655 df-1nq 10656 df-ltnq 10658 df-np 10721 |
This theorem is referenced by: ltexprlem6 10781 ltexprlem7 10782 ltexpri 10783 |
Copyright terms: Public domain | W3C validator |