| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trclfvcotrg | Structured version Visualization version GIF version | ||
| Description: The value of the transitive closure of a relation is always a transitive relation. (Contributed by RP, 8-May-2020.) |
| Ref | Expression |
|---|---|
| trclfvcotrg | ⊢ ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trclfvcotr 14916 | . 2 ⊢ (𝑅 ∈ V → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) | |
| 2 | fvprc 6814 | . . 3 ⊢ (¬ 𝑅 ∈ V → (t+‘𝑅) = ∅) | |
| 3 | 0trrel 14888 | . . . . 5 ⊢ (∅ ∘ ∅) ⊆ ∅ | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ ((t+‘𝑅) = ∅ → (∅ ∘ ∅) ⊆ ∅) |
| 5 | id 22 | . . . . 5 ⊢ ((t+‘𝑅) = ∅ → (t+‘𝑅) = ∅) | |
| 6 | 5, 5 | coeq12d 5803 | . . . 4 ⊢ ((t+‘𝑅) = ∅ → ((t+‘𝑅) ∘ (t+‘𝑅)) = (∅ ∘ ∅)) |
| 7 | 4, 6, 5 | 3sstr4d 3985 | . . 3 ⊢ ((t+‘𝑅) = ∅ → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) |
| 8 | 2, 7 | syl 17 | . 2 ⊢ (¬ 𝑅 ∈ V → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) |
| 9 | 1, 8 | pm2.61i 182 | 1 ⊢ ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 ∅c0 4280 ∘ ccom 5618 ‘cfv 6481 t+ctcl 14892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-trcl 14894 |
| This theorem is referenced by: cotrcltrcl 43766 brtrclfv2 43768 frege96d 43790 frege97d 43793 frege98d 43794 frege109d 43798 frege131d 43805 |
| Copyright terms: Public domain | W3C validator |