| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trclfvcotrg | Structured version Visualization version GIF version | ||
| Description: The value of the transitive closure of a relation is always a transitive relation. (Contributed by RP, 8-May-2020.) |
| Ref | Expression |
|---|---|
| trclfvcotrg | ⊢ ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trclfvcotr 15028 | . 2 ⊢ (𝑅 ∈ V → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) | |
| 2 | fvprc 6868 | . . 3 ⊢ (¬ 𝑅 ∈ V → (t+‘𝑅) = ∅) | |
| 3 | 0trrel 15000 | . . . . 5 ⊢ (∅ ∘ ∅) ⊆ ∅ | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ ((t+‘𝑅) = ∅ → (∅ ∘ ∅) ⊆ ∅) |
| 5 | id 22 | . . . . 5 ⊢ ((t+‘𝑅) = ∅ → (t+‘𝑅) = ∅) | |
| 6 | 5, 5 | coeq12d 5844 | . . . 4 ⊢ ((t+‘𝑅) = ∅ → ((t+‘𝑅) ∘ (t+‘𝑅)) = (∅ ∘ ∅)) |
| 7 | 4, 6, 5 | 3sstr4d 4014 | . . 3 ⊢ ((t+‘𝑅) = ∅ → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) |
| 8 | 2, 7 | syl 17 | . 2 ⊢ (¬ 𝑅 ∈ V → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) |
| 9 | 1, 8 | pm2.61i 182 | 1 ⊢ ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 ∅c0 4308 ∘ ccom 5658 ‘cfv 6531 t+ctcl 15004 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-iota 6484 df-fun 6533 df-fv 6539 df-trcl 15006 |
| This theorem is referenced by: cotrcltrcl 43749 brtrclfv2 43751 frege96d 43773 frege97d 43776 frege98d 43777 frege109d 43781 frege131d 43788 |
| Copyright terms: Public domain | W3C validator |