MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclfvcotrg Structured version   Visualization version   GIF version

Theorem trclfvcotrg 14982
Description: The value of the transitive closure of a relation is always a transitive relation. (Contributed by RP, 8-May-2020.)
Assertion
Ref Expression
trclfvcotrg ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)

Proof of Theorem trclfvcotrg
StepHypRef Expression
1 trclfvcotr 14975 . 2 (𝑅 ∈ V → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))
2 fvprc 6850 . . 3 𝑅 ∈ V → (t+‘𝑅) = ∅)
3 0trrel 14947 . . . . 5 (∅ ∘ ∅) ⊆ ∅
43a1i 11 . . . 4 ((t+‘𝑅) = ∅ → (∅ ∘ ∅) ⊆ ∅)
5 id 22 . . . . 5 ((t+‘𝑅) = ∅ → (t+‘𝑅) = ∅)
65, 5coeq12d 5828 . . . 4 ((t+‘𝑅) = ∅ → ((t+‘𝑅) ∘ (t+‘𝑅)) = (∅ ∘ ∅))
74, 6, 53sstr4d 4002 . . 3 ((t+‘𝑅) = ∅ → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))
82, 7syl 17 . 2 𝑅 ∈ V → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))
91, 8pm2.61i 182 1 ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  c0 4296  ccom 5642  cfv 6511  t+ctcl 14951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-trcl 14953
This theorem is referenced by:  cotrcltrcl  43714  brtrclfv2  43716  frege96d  43738  frege97d  43741  frege98d  43742  frege109d  43746  frege131d  43753
  Copyright terms: Public domain W3C validator