![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trclfvcotrg | Structured version Visualization version GIF version |
Description: The value of the transitive closure of a relation is always a transitive relation. (Contributed by RP, 8-May-2020.) |
Ref | Expression |
---|---|
trclfvcotrg | ⊢ ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trclfvcotr 14986 | . 2 ⊢ (𝑅 ∈ V → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) | |
2 | fvprc 6883 | . . 3 ⊢ (¬ 𝑅 ∈ V → (t+‘𝑅) = ∅) | |
3 | 0trrel 14958 | . . . . 5 ⊢ (∅ ∘ ∅) ⊆ ∅ | |
4 | 3 | a1i 11 | . . . 4 ⊢ ((t+‘𝑅) = ∅ → (∅ ∘ ∅) ⊆ ∅) |
5 | id 22 | . . . . 5 ⊢ ((t+‘𝑅) = ∅ → (t+‘𝑅) = ∅) | |
6 | 5, 5 | coeq12d 5861 | . . . 4 ⊢ ((t+‘𝑅) = ∅ → ((t+‘𝑅) ∘ (t+‘𝑅)) = (∅ ∘ ∅)) |
7 | 4, 6, 5 | 3sstr4d 4020 | . . 3 ⊢ ((t+‘𝑅) = ∅ → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) |
8 | 2, 7 | syl 17 | . 2 ⊢ (¬ 𝑅 ∈ V → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) |
9 | 1, 8 | pm2.61i 182 | 1 ⊢ ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1533 ∈ wcel 2098 Vcvv 3463 ⊆ wss 3940 ∅c0 4318 ∘ ccom 5676 ‘cfv 6542 t+ctcl 14962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-iota 6494 df-fun 6544 df-fv 6550 df-trcl 14964 |
This theorem is referenced by: cotrcltrcl 43219 brtrclfv2 43221 frege96d 43243 frege97d 43246 frege98d 43247 frege109d 43251 frege131d 43258 |
Copyright terms: Public domain | W3C validator |