MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclfvcotrg Structured version   Visualization version   GIF version

Theorem trclfvcotrg 14655
Description: The value of the transitive closure of a relation is always a transitive relation. (Contributed by RP, 8-May-2020.)
Assertion
Ref Expression
trclfvcotrg ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)

Proof of Theorem trclfvcotrg
StepHypRef Expression
1 trclfvcotr 14648 . 2 (𝑅 ∈ V → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))
2 fvprc 6748 . . 3 𝑅 ∈ V → (t+‘𝑅) = ∅)
3 0trrel 14620 . . . . 5 (∅ ∘ ∅) ⊆ ∅
43a1i 11 . . . 4 ((t+‘𝑅) = ∅ → (∅ ∘ ∅) ⊆ ∅)
5 id 22 . . . . 5 ((t+‘𝑅) = ∅ → (t+‘𝑅) = ∅)
65, 5coeq12d 5762 . . . 4 ((t+‘𝑅) = ∅ → ((t+‘𝑅) ∘ (t+‘𝑅)) = (∅ ∘ ∅))
74, 6, 53sstr4d 3964 . . 3 ((t+‘𝑅) = ∅ → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))
82, 7syl 17 . 2 𝑅 ∈ V → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))
91, 8pm2.61i 182 1 ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  c0 4253  ccom 5584  cfv 6418  t+ctcl 14624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426  df-trcl 14626
This theorem is referenced by:  cotrcltrcl  41222  brtrclfv2  41224  frege96d  41246  frege97d  41249  frege98d  41250  frege109d  41254  frege131d  41261
  Copyright terms: Public domain W3C validator