| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trclfvcotrg | Structured version Visualization version GIF version | ||
| Description: The value of the transitive closure of a relation is always a transitive relation. (Contributed by RP, 8-May-2020.) |
| Ref | Expression |
|---|---|
| trclfvcotrg | ⊢ ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trclfvcotr 14982 | . 2 ⊢ (𝑅 ∈ V → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) | |
| 2 | fvprc 6853 | . . 3 ⊢ (¬ 𝑅 ∈ V → (t+‘𝑅) = ∅) | |
| 3 | 0trrel 14954 | . . . . 5 ⊢ (∅ ∘ ∅) ⊆ ∅ | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ ((t+‘𝑅) = ∅ → (∅ ∘ ∅) ⊆ ∅) |
| 5 | id 22 | . . . . 5 ⊢ ((t+‘𝑅) = ∅ → (t+‘𝑅) = ∅) | |
| 6 | 5, 5 | coeq12d 5831 | . . . 4 ⊢ ((t+‘𝑅) = ∅ → ((t+‘𝑅) ∘ (t+‘𝑅)) = (∅ ∘ ∅)) |
| 7 | 4, 6, 5 | 3sstr4d 4005 | . . 3 ⊢ ((t+‘𝑅) = ∅ → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) |
| 8 | 2, 7 | syl 17 | . 2 ⊢ (¬ 𝑅 ∈ V → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) |
| 9 | 1, 8 | pm2.61i 182 | 1 ⊢ ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 ∅c0 4299 ∘ ccom 5645 ‘cfv 6514 t+ctcl 14958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-iota 6467 df-fun 6516 df-fv 6522 df-trcl 14960 |
| This theorem is referenced by: cotrcltrcl 43721 brtrclfv2 43723 frege96d 43745 frege97d 43748 frege98d 43749 frege109d 43753 frege131d 43760 |
| Copyright terms: Public domain | W3C validator |