MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  co01 Structured version   Visualization version   GIF version

Theorem co01 6257
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co01 (∅ ∘ 𝐴) = ∅

Proof of Theorem co01
StepHypRef Expression
1 cnv0 6137 . . . 4 ∅ = ∅
2 cnvco 5883 . . . . 5 (∅ ∘ 𝐴) = (𝐴∅)
31coeq2i 5858 . . . . 5 (𝐴∅) = (𝐴 ∘ ∅)
4 co02 6256 . . . . 5 (𝐴 ∘ ∅) = ∅
52, 3, 43eqtri 2764 . . . 4 (∅ ∘ 𝐴) = ∅
61, 5eqtr4i 2763 . . 3 ∅ = (∅ ∘ 𝐴)
76cnveqi 5872 . 2 ∅ = (∅ ∘ 𝐴)
8 rel0 5797 . . 3 Rel ∅
9 dfrel2 6185 . . 3 (Rel ∅ ↔ ∅ = ∅)
108, 9mpbi 229 . 2 ∅ = ∅
11 relco 6104 . . 3 Rel (∅ ∘ 𝐴)
12 dfrel2 6185 . . 3 (Rel (∅ ∘ 𝐴) ↔ (∅ ∘ 𝐴) = (∅ ∘ 𝐴))
1311, 12mpbi 229 . 2 (∅ ∘ 𝐴) = (∅ ∘ 𝐴)
147, 10, 133eqtr3ri 2769 1 (∅ ∘ 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  c0 4321  ccnv 5674  ccom 5679  Rel wrel 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684
This theorem is referenced by:  xpcoid  6286  0trrel  14924  relexpsucrd  14976  relexpaddd  14997  gsumval3  19769  utop2nei  23746  cononrel2  42331
  Copyright terms: Public domain W3C validator