![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > co01 | Structured version Visualization version GIF version |
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
co01 | ⊢ (∅ ∘ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnv0 6162 | . . . 4 ⊢ ◡∅ = ∅ | |
2 | cnvco 5898 | . . . . 5 ⊢ ◡(∅ ∘ 𝐴) = (◡𝐴 ∘ ◡∅) | |
3 | 1 | coeq2i 5873 | . . . . 5 ⊢ (◡𝐴 ∘ ◡∅) = (◡𝐴 ∘ ∅) |
4 | co02 6281 | . . . . 5 ⊢ (◡𝐴 ∘ ∅) = ∅ | |
5 | 2, 3, 4 | 3eqtri 2766 | . . . 4 ⊢ ◡(∅ ∘ 𝐴) = ∅ |
6 | 1, 5 | eqtr4i 2765 | . . 3 ⊢ ◡∅ = ◡(∅ ∘ 𝐴) |
7 | 6 | cnveqi 5887 | . 2 ⊢ ◡◡∅ = ◡◡(∅ ∘ 𝐴) |
8 | rel0 5811 | . . 3 ⊢ Rel ∅ | |
9 | dfrel2 6210 | . . 3 ⊢ (Rel ∅ ↔ ◡◡∅ = ∅) | |
10 | 8, 9 | mpbi 230 | . 2 ⊢ ◡◡∅ = ∅ |
11 | relco 6128 | . . 3 ⊢ Rel (∅ ∘ 𝐴) | |
12 | dfrel2 6210 | . . 3 ⊢ (Rel (∅ ∘ 𝐴) ↔ ◡◡(∅ ∘ 𝐴) = (∅ ∘ 𝐴)) | |
13 | 11, 12 | mpbi 230 | . 2 ⊢ ◡◡(∅ ∘ 𝐴) = (∅ ∘ 𝐴) |
14 | 7, 10, 13 | 3eqtr3ri 2771 | 1 ⊢ (∅ ∘ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∅c0 4338 ◡ccnv 5687 ∘ ccom 5692 Rel wrel 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 |
This theorem is referenced by: xpcoid 6311 0trrel 15016 relexpsucrd 15068 relexpaddd 15089 gsumval3 19939 utop2nei 24274 cononrel2 43584 |
Copyright terms: Public domain | W3C validator |