| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > co01 | Structured version Visualization version GIF version | ||
| Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.) |
| Ref | Expression |
|---|---|
| co01 | ⊢ (∅ ∘ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnv0 6116 | . . . 4 ⊢ ◡∅ = ∅ | |
| 2 | cnvco 5852 | . . . . 5 ⊢ ◡(∅ ∘ 𝐴) = (◡𝐴 ∘ ◡∅) | |
| 3 | 1 | coeq2i 5827 | . . . . 5 ⊢ (◡𝐴 ∘ ◡∅) = (◡𝐴 ∘ ∅) |
| 4 | co02 6236 | . . . . 5 ⊢ (◡𝐴 ∘ ∅) = ∅ | |
| 5 | 2, 3, 4 | 3eqtri 2757 | . . . 4 ⊢ ◡(∅ ∘ 𝐴) = ∅ |
| 6 | 1, 5 | eqtr4i 2756 | . . 3 ⊢ ◡∅ = ◡(∅ ∘ 𝐴) |
| 7 | 6 | cnveqi 5841 | . 2 ⊢ ◡◡∅ = ◡◡(∅ ∘ 𝐴) |
| 8 | rel0 5765 | . . 3 ⊢ Rel ∅ | |
| 9 | dfrel2 6165 | . . 3 ⊢ (Rel ∅ ↔ ◡◡∅ = ∅) | |
| 10 | 8, 9 | mpbi 230 | . 2 ⊢ ◡◡∅ = ∅ |
| 11 | relco 6082 | . . 3 ⊢ Rel (∅ ∘ 𝐴) | |
| 12 | dfrel2 6165 | . . 3 ⊢ (Rel (∅ ∘ 𝐴) ↔ ◡◡(∅ ∘ 𝐴) = (∅ ∘ 𝐴)) | |
| 13 | 11, 12 | mpbi 230 | . 2 ⊢ ◡◡(∅ ∘ 𝐴) = (∅ ∘ 𝐴) |
| 14 | 7, 10, 13 | 3eqtr3ri 2762 | 1 ⊢ (∅ ∘ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4299 ◡ccnv 5640 ∘ ccom 5645 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 |
| This theorem is referenced by: xpcoid 6266 0trrel 14954 relexpsucrd 15006 relexpaddd 15027 gsumval3 19844 utop2nei 24145 cononrel2 43591 setc1ocofval 49487 |
| Copyright terms: Public domain | W3C validator |