MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  co01 Structured version   Visualization version   GIF version

Theorem co01 6292
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co01 (∅ ∘ 𝐴) = ∅

Proof of Theorem co01
StepHypRef Expression
1 cnv0 6172 . . . 4 ∅ = ∅
2 cnvco 5910 . . . . 5 (∅ ∘ 𝐴) = (𝐴∅)
31coeq2i 5885 . . . . 5 (𝐴∅) = (𝐴 ∘ ∅)
4 co02 6291 . . . . 5 (𝐴 ∘ ∅) = ∅
52, 3, 43eqtri 2772 . . . 4 (∅ ∘ 𝐴) = ∅
61, 5eqtr4i 2771 . . 3 ∅ = (∅ ∘ 𝐴)
76cnveqi 5899 . 2 ∅ = (∅ ∘ 𝐴)
8 rel0 5823 . . 3 Rel ∅
9 dfrel2 6220 . . 3 (Rel ∅ ↔ ∅ = ∅)
108, 9mpbi 230 . 2 ∅ = ∅
11 relco 6138 . . 3 Rel (∅ ∘ 𝐴)
12 dfrel2 6220 . . 3 (Rel (∅ ∘ 𝐴) ↔ (∅ ∘ 𝐴) = (∅ ∘ 𝐴))
1311, 12mpbi 230 . 2 (∅ ∘ 𝐴) = (∅ ∘ 𝐴)
147, 10, 133eqtr3ri 2777 1 (∅ ∘ 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  c0 4352  ccnv 5699  ccom 5704  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709
This theorem is referenced by:  xpcoid  6321  0trrel  15030  relexpsucrd  15082  relexpaddd  15103  gsumval3  19949  utop2nei  24280  cononrel2  43557
  Copyright terms: Public domain W3C validator