MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  co01 Structured version   Visualization version   GIF version

Theorem co01 6204
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co01 (∅ ∘ 𝐴) = ∅

Proof of Theorem co01
StepHypRef Expression
1 cnv0 6084 . . . 4 ∅ = ∅
2 cnvco 5832 . . . . 5 (∅ ∘ 𝐴) = (𝐴∅)
31coeq2i 5807 . . . . 5 (𝐴∅) = (𝐴 ∘ ∅)
4 co02 6203 . . . . 5 (𝐴 ∘ ∅) = ∅
52, 3, 43eqtri 2769 . . . 4 (∅ ∘ 𝐴) = ∅
61, 5eqtr4i 2768 . . 3 ∅ = (∅ ∘ 𝐴)
76cnveqi 5821 . 2 ∅ = (∅ ∘ 𝐴)
8 rel0 5746 . . 3 Rel ∅
9 dfrel2 6132 . . 3 (Rel ∅ ↔ ∅ = ∅)
108, 9mpbi 229 . 2 ∅ = ∅
11 relco 6051 . . 3 Rel (∅ ∘ 𝐴)
12 dfrel2 6132 . . 3 (Rel (∅ ∘ 𝐴) ↔ (∅ ∘ 𝐴) = (∅ ∘ 𝐴))
1311, 12mpbi 229 . 2 (∅ ∘ 𝐴) = (∅ ∘ 𝐴)
147, 10, 133eqtr3ri 2774 1 (∅ ∘ 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  c0 4274  ccnv 5624  ccom 5629  Rel wrel 5630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pr 5377
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3405  df-v 3444  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-sn 4579  df-pr 4581  df-op 4585  df-br 5098  df-opab 5160  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634
This theorem is referenced by:  xpcoid  6233  0trrel  14792  relexpsucrd  14844  relexpaddd  14865  gsumval3  19603  utop2nei  23508  cononrel2  41574
  Copyright terms: Public domain W3C validator