MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  co01 Structured version   Visualization version   GIF version

Theorem co01 6265
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co01 (∅ ∘ 𝐴) = ∅

Proof of Theorem co01
StepHypRef Expression
1 cnv0 6145 . . . 4 ∅ = ∅
2 cnvco 5888 . . . . 5 (∅ ∘ 𝐴) = (𝐴∅)
31coeq2i 5863 . . . . 5 (𝐴∅) = (𝐴 ∘ ∅)
4 co02 6264 . . . . 5 (𝐴 ∘ ∅) = ∅
52, 3, 43eqtri 2760 . . . 4 (∅ ∘ 𝐴) = ∅
61, 5eqtr4i 2759 . . 3 ∅ = (∅ ∘ 𝐴)
76cnveqi 5877 . 2 ∅ = (∅ ∘ 𝐴)
8 rel0 5801 . . 3 Rel ∅
9 dfrel2 6193 . . 3 (Rel ∅ ↔ ∅ = ∅)
108, 9mpbi 229 . 2 ∅ = ∅
11 relco 6112 . . 3 Rel (∅ ∘ 𝐴)
12 dfrel2 6193 . . 3 (Rel (∅ ∘ 𝐴) ↔ (∅ ∘ 𝐴) = (∅ ∘ 𝐴))
1311, 12mpbi 229 . 2 (∅ ∘ 𝐴) = (∅ ∘ 𝐴)
147, 10, 133eqtr3ri 2765 1 (∅ ∘ 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  c0 4323  ccnv 5677  ccom 5682  Rel wrel 5683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687
This theorem is referenced by:  xpcoid  6294  0trrel  14960  relexpsucrd  15012  relexpaddd  15033  gsumval3  19861  utop2nei  24154  cononrel2  43025
  Copyright terms: Public domain W3C validator