MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  co01 Structured version   Visualization version   GIF version

Theorem co01 6250
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co01 (∅ ∘ 𝐴) = ∅

Proof of Theorem co01
StepHypRef Expression
1 cnv0 6129 . . . 4 ∅ = ∅
2 cnvco 5865 . . . . 5 (∅ ∘ 𝐴) = (𝐴∅)
31coeq2i 5840 . . . . 5 (𝐴∅) = (𝐴 ∘ ∅)
4 co02 6249 . . . . 5 (𝐴 ∘ ∅) = ∅
52, 3, 43eqtri 2762 . . . 4 (∅ ∘ 𝐴) = ∅
61, 5eqtr4i 2761 . . 3 ∅ = (∅ ∘ 𝐴)
76cnveqi 5854 . 2 ∅ = (∅ ∘ 𝐴)
8 rel0 5778 . . 3 Rel ∅
9 dfrel2 6178 . . 3 (Rel ∅ ↔ ∅ = ∅)
108, 9mpbi 230 . 2 ∅ = ∅
11 relco 6095 . . 3 Rel (∅ ∘ 𝐴)
12 dfrel2 6178 . . 3 (Rel (∅ ∘ 𝐴) ↔ (∅ ∘ 𝐴) = (∅ ∘ 𝐴))
1311, 12mpbi 230 . 2 (∅ ∘ 𝐴) = (∅ ∘ 𝐴)
147, 10, 133eqtr3ri 2767 1 (∅ ∘ 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  c0 4308  ccnv 5653  ccom 5658  Rel wrel 5659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663
This theorem is referenced by:  xpcoid  6279  0trrel  15000  relexpsucrd  15052  relexpaddd  15073  gsumval3  19888  utop2nei  24189  cononrel2  43619  setc1ocofval  49379
  Copyright terms: Public domain W3C validator