MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  co01 Structured version   Visualization version   GIF version

Theorem co01 6162
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co01 (∅ ∘ 𝐴) = ∅

Proof of Theorem co01
StepHypRef Expression
1 cnv0 6041 . . . 4 ∅ = ∅
2 cnvco 5791 . . . . 5 (∅ ∘ 𝐴) = (𝐴∅)
31coeq2i 5766 . . . . 5 (𝐴∅) = (𝐴 ∘ ∅)
4 co02 6161 . . . . 5 (𝐴 ∘ ∅) = ∅
52, 3, 43eqtri 2771 . . . 4 (∅ ∘ 𝐴) = ∅
61, 5eqtr4i 2770 . . 3 ∅ = (∅ ∘ 𝐴)
76cnveqi 5780 . 2 ∅ = (∅ ∘ 𝐴)
8 rel0 5706 . . 3 Rel ∅
9 dfrel2 6089 . . 3 (Rel ∅ ↔ ∅ = ∅)
108, 9mpbi 229 . 2 ∅ = ∅
11 relco 6145 . . 3 Rel (∅ ∘ 𝐴)
12 dfrel2 6089 . . 3 (Rel (∅ ∘ 𝐴) ↔ (∅ ∘ 𝐴) = (∅ ∘ 𝐴))
1311, 12mpbi 229 . 2 (∅ ∘ 𝐴) = (∅ ∘ 𝐴)
147, 10, 133eqtr3ri 2776 1 (∅ ∘ 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  c0 4261  ccnv 5587  ccom 5592  Rel wrel 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597
This theorem is referenced by:  xpcoid  6190  0trrel  14673  relexpsucrd  14725  relexpaddd  14746  gsumval3  19489  utop2nei  23383  cononrel2  41156
  Copyright terms: Public domain W3C validator