Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > co01 | Structured version Visualization version GIF version |
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
co01 | ⊢ (∅ ∘ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnv0 6041 | . . . 4 ⊢ ◡∅ = ∅ | |
2 | cnvco 5791 | . . . . 5 ⊢ ◡(∅ ∘ 𝐴) = (◡𝐴 ∘ ◡∅) | |
3 | 1 | coeq2i 5766 | . . . . 5 ⊢ (◡𝐴 ∘ ◡∅) = (◡𝐴 ∘ ∅) |
4 | co02 6161 | . . . . 5 ⊢ (◡𝐴 ∘ ∅) = ∅ | |
5 | 2, 3, 4 | 3eqtri 2771 | . . . 4 ⊢ ◡(∅ ∘ 𝐴) = ∅ |
6 | 1, 5 | eqtr4i 2770 | . . 3 ⊢ ◡∅ = ◡(∅ ∘ 𝐴) |
7 | 6 | cnveqi 5780 | . 2 ⊢ ◡◡∅ = ◡◡(∅ ∘ 𝐴) |
8 | rel0 5706 | . . 3 ⊢ Rel ∅ | |
9 | dfrel2 6089 | . . 3 ⊢ (Rel ∅ ↔ ◡◡∅ = ∅) | |
10 | 8, 9 | mpbi 229 | . 2 ⊢ ◡◡∅ = ∅ |
11 | relco 6145 | . . 3 ⊢ Rel (∅ ∘ 𝐴) | |
12 | dfrel2 6089 | . . 3 ⊢ (Rel (∅ ∘ 𝐴) ↔ ◡◡(∅ ∘ 𝐴) = (∅ ∘ 𝐴)) | |
13 | 11, 12 | mpbi 229 | . 2 ⊢ ◡◡(∅ ∘ 𝐴) = (∅ ∘ 𝐴) |
14 | 7, 10, 13 | 3eqtr3ri 2776 | 1 ⊢ (∅ ∘ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∅c0 4261 ◡ccnv 5587 ∘ ccom 5592 Rel wrel 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 |
This theorem is referenced by: xpcoid 6190 0trrel 14673 relexpsucrd 14725 relexpaddd 14746 gsumval3 19489 utop2nei 23383 cononrel2 41156 |
Copyright terms: Public domain | W3C validator |