![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > co01 | Structured version Visualization version GIF version |
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
co01 | ⊢ (∅ ∘ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnv0 6131 | . . . 4 ⊢ ◡∅ = ∅ | |
2 | cnvco 5876 | . . . . 5 ⊢ ◡(∅ ∘ 𝐴) = (◡𝐴 ∘ ◡∅) | |
3 | 1 | coeq2i 5851 | . . . . 5 ⊢ (◡𝐴 ∘ ◡∅) = (◡𝐴 ∘ ∅) |
4 | co02 6250 | . . . . 5 ⊢ (◡𝐴 ∘ ∅) = ∅ | |
5 | 2, 3, 4 | 3eqtri 2756 | . . . 4 ⊢ ◡(∅ ∘ 𝐴) = ∅ |
6 | 1, 5 | eqtr4i 2755 | . . 3 ⊢ ◡∅ = ◡(∅ ∘ 𝐴) |
7 | 6 | cnveqi 5865 | . 2 ⊢ ◡◡∅ = ◡◡(∅ ∘ 𝐴) |
8 | rel0 5790 | . . 3 ⊢ Rel ∅ | |
9 | dfrel2 6179 | . . 3 ⊢ (Rel ∅ ↔ ◡◡∅ = ∅) | |
10 | 8, 9 | mpbi 229 | . 2 ⊢ ◡◡∅ = ∅ |
11 | relco 6098 | . . 3 ⊢ Rel (∅ ∘ 𝐴) | |
12 | dfrel2 6179 | . . 3 ⊢ (Rel (∅ ∘ 𝐴) ↔ ◡◡(∅ ∘ 𝐴) = (∅ ∘ 𝐴)) | |
13 | 11, 12 | mpbi 229 | . 2 ⊢ ◡◡(∅ ∘ 𝐴) = (∅ ∘ 𝐴) |
14 | 7, 10, 13 | 3eqtr3ri 2761 | 1 ⊢ (∅ ∘ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∅c0 4315 ◡ccnv 5666 ∘ ccom 5671 Rel wrel 5672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 |
This theorem is referenced by: xpcoid 6280 0trrel 14930 relexpsucrd 14982 relexpaddd 15003 gsumval3 19823 utop2nei 24099 cononrel2 42895 |
Copyright terms: Public domain | W3C validator |