MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  co01 Structured version   Visualization version   GIF version

Theorem co01 6282
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co01 (∅ ∘ 𝐴) = ∅

Proof of Theorem co01
StepHypRef Expression
1 cnv0 6162 . . . 4 ∅ = ∅
2 cnvco 5898 . . . . 5 (∅ ∘ 𝐴) = (𝐴∅)
31coeq2i 5873 . . . . 5 (𝐴∅) = (𝐴 ∘ ∅)
4 co02 6281 . . . . 5 (𝐴 ∘ ∅) = ∅
52, 3, 43eqtri 2766 . . . 4 (∅ ∘ 𝐴) = ∅
61, 5eqtr4i 2765 . . 3 ∅ = (∅ ∘ 𝐴)
76cnveqi 5887 . 2 ∅ = (∅ ∘ 𝐴)
8 rel0 5811 . . 3 Rel ∅
9 dfrel2 6210 . . 3 (Rel ∅ ↔ ∅ = ∅)
108, 9mpbi 230 . 2 ∅ = ∅
11 relco 6128 . . 3 Rel (∅ ∘ 𝐴)
12 dfrel2 6210 . . 3 (Rel (∅ ∘ 𝐴) ↔ (∅ ∘ 𝐴) = (∅ ∘ 𝐴))
1311, 12mpbi 230 . 2 (∅ ∘ 𝐴) = (∅ ∘ 𝐴)
147, 10, 133eqtr3ri 2771 1 (∅ ∘ 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  c0 4338  ccnv 5687  ccom 5692  Rel wrel 5693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5148  df-opab 5210  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697
This theorem is referenced by:  xpcoid  6311  0trrel  15016  relexpsucrd  15068  relexpaddd  15089  gsumval3  19939  utop2nei  24274  cononrel2  43584
  Copyright terms: Public domain W3C validator