Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > co01 | Structured version Visualization version GIF version |
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
co01 | ⊢ (∅ ∘ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnv0 6084 | . . . 4 ⊢ ◡∅ = ∅ | |
2 | cnvco 5832 | . . . . 5 ⊢ ◡(∅ ∘ 𝐴) = (◡𝐴 ∘ ◡∅) | |
3 | 1 | coeq2i 5807 | . . . . 5 ⊢ (◡𝐴 ∘ ◡∅) = (◡𝐴 ∘ ∅) |
4 | co02 6203 | . . . . 5 ⊢ (◡𝐴 ∘ ∅) = ∅ | |
5 | 2, 3, 4 | 3eqtri 2769 | . . . 4 ⊢ ◡(∅ ∘ 𝐴) = ∅ |
6 | 1, 5 | eqtr4i 2768 | . . 3 ⊢ ◡∅ = ◡(∅ ∘ 𝐴) |
7 | 6 | cnveqi 5821 | . 2 ⊢ ◡◡∅ = ◡◡(∅ ∘ 𝐴) |
8 | rel0 5746 | . . 3 ⊢ Rel ∅ | |
9 | dfrel2 6132 | . . 3 ⊢ (Rel ∅ ↔ ◡◡∅ = ∅) | |
10 | 8, 9 | mpbi 229 | . 2 ⊢ ◡◡∅ = ∅ |
11 | relco 6051 | . . 3 ⊢ Rel (∅ ∘ 𝐴) | |
12 | dfrel2 6132 | . . 3 ⊢ (Rel (∅ ∘ 𝐴) ↔ ◡◡(∅ ∘ 𝐴) = (∅ ∘ 𝐴)) | |
13 | 11, 12 | mpbi 229 | . 2 ⊢ ◡◡(∅ ∘ 𝐴) = (∅ ∘ 𝐴) |
14 | 7, 10, 13 | 3eqtr3ri 2774 | 1 ⊢ (∅ ∘ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∅c0 4274 ◡ccnv 5624 ∘ ccom 5629 Rel wrel 5630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pr 5377 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-br 5098 df-opab 5160 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 |
This theorem is referenced by: xpcoid 6233 0trrel 14792 relexpsucrd 14844 relexpaddd 14865 gsumval3 19603 utop2nei 23508 cononrel2 41574 |
Copyright terms: Public domain | W3C validator |