MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  co01 Structured version   Visualization version   GIF version

Theorem co01 6237
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co01 (∅ ∘ 𝐴) = ∅

Proof of Theorem co01
StepHypRef Expression
1 cnv0 6116 . . . 4 ∅ = ∅
2 cnvco 5852 . . . . 5 (∅ ∘ 𝐴) = (𝐴∅)
31coeq2i 5827 . . . . 5 (𝐴∅) = (𝐴 ∘ ∅)
4 co02 6236 . . . . 5 (𝐴 ∘ ∅) = ∅
52, 3, 43eqtri 2757 . . . 4 (∅ ∘ 𝐴) = ∅
61, 5eqtr4i 2756 . . 3 ∅ = (∅ ∘ 𝐴)
76cnveqi 5841 . 2 ∅ = (∅ ∘ 𝐴)
8 rel0 5765 . . 3 Rel ∅
9 dfrel2 6165 . . 3 (Rel ∅ ↔ ∅ = ∅)
108, 9mpbi 230 . 2 ∅ = ∅
11 relco 6082 . . 3 Rel (∅ ∘ 𝐴)
12 dfrel2 6165 . . 3 (Rel (∅ ∘ 𝐴) ↔ (∅ ∘ 𝐴) = (∅ ∘ 𝐴))
1311, 12mpbi 230 . 2 (∅ ∘ 𝐴) = (∅ ∘ 𝐴)
147, 10, 133eqtr3ri 2762 1 (∅ ∘ 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  c0 4299  ccnv 5640  ccom 5645  Rel wrel 5646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650
This theorem is referenced by:  xpcoid  6266  0trrel  14954  relexpsucrd  15006  relexpaddd  15027  gsumval3  19844  utop2nei  24145  cononrel2  43591  setc1ocofval  49487
  Copyright terms: Public domain W3C validator