| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > co01 | Structured version Visualization version GIF version | ||
| Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.) |
| Ref | Expression |
|---|---|
| co01 | ⊢ (∅ ∘ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnv0 6129 | . . . 4 ⊢ ◡∅ = ∅ | |
| 2 | cnvco 5865 | . . . . 5 ⊢ ◡(∅ ∘ 𝐴) = (◡𝐴 ∘ ◡∅) | |
| 3 | 1 | coeq2i 5840 | . . . . 5 ⊢ (◡𝐴 ∘ ◡∅) = (◡𝐴 ∘ ∅) |
| 4 | co02 6249 | . . . . 5 ⊢ (◡𝐴 ∘ ∅) = ∅ | |
| 5 | 2, 3, 4 | 3eqtri 2762 | . . . 4 ⊢ ◡(∅ ∘ 𝐴) = ∅ |
| 6 | 1, 5 | eqtr4i 2761 | . . 3 ⊢ ◡∅ = ◡(∅ ∘ 𝐴) |
| 7 | 6 | cnveqi 5854 | . 2 ⊢ ◡◡∅ = ◡◡(∅ ∘ 𝐴) |
| 8 | rel0 5778 | . . 3 ⊢ Rel ∅ | |
| 9 | dfrel2 6178 | . . 3 ⊢ (Rel ∅ ↔ ◡◡∅ = ∅) | |
| 10 | 8, 9 | mpbi 230 | . 2 ⊢ ◡◡∅ = ∅ |
| 11 | relco 6095 | . . 3 ⊢ Rel (∅ ∘ 𝐴) | |
| 12 | dfrel2 6178 | . . 3 ⊢ (Rel (∅ ∘ 𝐴) ↔ ◡◡(∅ ∘ 𝐴) = (∅ ∘ 𝐴)) | |
| 13 | 11, 12 | mpbi 230 | . 2 ⊢ ◡◡(∅ ∘ 𝐴) = (∅ ∘ 𝐴) |
| 14 | 7, 10, 13 | 3eqtr3ri 2767 | 1 ⊢ (∅ ∘ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4308 ◡ccnv 5653 ∘ ccom 5658 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 |
| This theorem is referenced by: xpcoid 6279 0trrel 15000 relexpsucrd 15052 relexpaddd 15073 gsumval3 19888 utop2nei 24189 cononrel2 43619 setc1ocofval 49379 |
| Copyright terms: Public domain | W3C validator |