| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > co01 | Structured version Visualization version GIF version | ||
| Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.) |
| Ref | Expression |
|---|---|
| co01 | ⊢ (∅ ∘ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnv0 6082 | . . . 4 ⊢ ◡∅ = ∅ | |
| 2 | cnvco 5820 | . . . . 5 ⊢ ◡(∅ ∘ 𝐴) = (◡𝐴 ∘ ◡∅) | |
| 3 | 1 | coeq2i 5795 | . . . . 5 ⊢ (◡𝐴 ∘ ◡∅) = (◡𝐴 ∘ ∅) |
| 4 | co02 6203 | . . . . 5 ⊢ (◡𝐴 ∘ ∅) = ∅ | |
| 5 | 2, 3, 4 | 3eqtri 2758 | . . . 4 ⊢ ◡(∅ ∘ 𝐴) = ∅ |
| 6 | 1, 5 | eqtr4i 2757 | . . 3 ⊢ ◡∅ = ◡(∅ ∘ 𝐴) |
| 7 | 6 | cnveqi 5809 | . 2 ⊢ ◡◡∅ = ◡◡(∅ ∘ 𝐴) |
| 8 | rel0 5734 | . . 3 ⊢ Rel ∅ | |
| 9 | dfrel2 6131 | . . 3 ⊢ (Rel ∅ ↔ ◡◡∅ = ∅) | |
| 10 | 8, 9 | mpbi 230 | . 2 ⊢ ◡◡∅ = ∅ |
| 11 | relco 6052 | . . 3 ⊢ Rel (∅ ∘ 𝐴) | |
| 12 | dfrel2 6131 | . . 3 ⊢ (Rel (∅ ∘ 𝐴) ↔ ◡◡(∅ ∘ 𝐴) = (∅ ∘ 𝐴)) | |
| 13 | 11, 12 | mpbi 230 | . 2 ⊢ ◡◡(∅ ∘ 𝐴) = (∅ ∘ 𝐴) |
| 14 | 7, 10, 13 | 3eqtr3ri 2763 | 1 ⊢ (∅ ∘ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4278 ◡ccnv 5610 ∘ ccom 5615 Rel wrel 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 |
| This theorem is referenced by: xpcoid 6232 0trrel 14883 relexpsucrd 14935 relexpaddd 14956 gsumval3 19814 utop2nei 24160 cononrel2 43628 setc1ocofval 49526 |
| Copyright terms: Public domain | W3C validator |