MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  co01 Structured version   Visualization version   GIF version

Theorem co01 6251
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co01 (∅ ∘ 𝐴) = ∅

Proof of Theorem co01
StepHypRef Expression
1 cnv0 6131 . . . 4 ∅ = ∅
2 cnvco 5876 . . . . 5 (∅ ∘ 𝐴) = (𝐴∅)
31coeq2i 5851 . . . . 5 (𝐴∅) = (𝐴 ∘ ∅)
4 co02 6250 . . . . 5 (𝐴 ∘ ∅) = ∅
52, 3, 43eqtri 2756 . . . 4 (∅ ∘ 𝐴) = ∅
61, 5eqtr4i 2755 . . 3 ∅ = (∅ ∘ 𝐴)
76cnveqi 5865 . 2 ∅ = (∅ ∘ 𝐴)
8 rel0 5790 . . 3 Rel ∅
9 dfrel2 6179 . . 3 (Rel ∅ ↔ ∅ = ∅)
108, 9mpbi 229 . 2 ∅ = ∅
11 relco 6098 . . 3 Rel (∅ ∘ 𝐴)
12 dfrel2 6179 . . 3 (Rel (∅ ∘ 𝐴) ↔ (∅ ∘ 𝐴) = (∅ ∘ 𝐴))
1311, 12mpbi 229 . 2 (∅ ∘ 𝐴) = (∅ ∘ 𝐴)
147, 10, 133eqtr3ri 2761 1 (∅ ∘ 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  c0 4315  ccnv 5666  ccom 5671  Rel wrel 5672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676
This theorem is referenced by:  xpcoid  6280  0trrel  14930  relexpsucrd  14982  relexpaddd  15003  gsumval3  19823  utop2nei  24099  cononrel2  42895
  Copyright terms: Public domain W3C validator