MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  co01 Structured version   Visualization version   GIF version

Theorem co01 6204
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co01 (∅ ∘ 𝐴) = ∅

Proof of Theorem co01
StepHypRef Expression
1 cnv0 6082 . . . 4 ∅ = ∅
2 cnvco 5820 . . . . 5 (∅ ∘ 𝐴) = (𝐴∅)
31coeq2i 5795 . . . . 5 (𝐴∅) = (𝐴 ∘ ∅)
4 co02 6203 . . . . 5 (𝐴 ∘ ∅) = ∅
52, 3, 43eqtri 2758 . . . 4 (∅ ∘ 𝐴) = ∅
61, 5eqtr4i 2757 . . 3 ∅ = (∅ ∘ 𝐴)
76cnveqi 5809 . 2 ∅ = (∅ ∘ 𝐴)
8 rel0 5734 . . 3 Rel ∅
9 dfrel2 6131 . . 3 (Rel ∅ ↔ ∅ = ∅)
108, 9mpbi 230 . 2 ∅ = ∅
11 relco 6052 . . 3 Rel (∅ ∘ 𝐴)
12 dfrel2 6131 . . 3 (Rel (∅ ∘ 𝐴) ↔ (∅ ∘ 𝐴) = (∅ ∘ 𝐴))
1311, 12mpbi 230 . 2 (∅ ∘ 𝐴) = (∅ ∘ 𝐴)
147, 10, 133eqtr3ri 2763 1 (∅ ∘ 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  c0 4278  ccnv 5610  ccom 5615  Rel wrel 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620
This theorem is referenced by:  xpcoid  6232  0trrel  14883  relexpsucrd  14935  relexpaddd  14956  gsumval3  19814  utop2nei  24160  cononrel2  43628  setc1ocofval  49526
  Copyright terms: Public domain W3C validator