| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqimssi | Structured version Visualization version GIF version | ||
| Description: Infer subclass relationship from equality. (Contributed by NM, 6-Jan-2007.) |
| Ref | Expression |
|---|---|
| eqimssi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqimssi | ⊢ 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3969 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | sseqtri 3995 | 1 ⊢ 𝐴 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 |
| This theorem is referenced by: funi 6548 fpr 7126 tz7.48-2 8410 trcl 9681 zorn2lem4 10452 zmin 12903 elfzo1 13673 om2uzf1oi 13918 0trrel 14947 sumsplit 15734 isumless 15811 rnglidl1 21142 frlmip 21687 ust0 24107 rrxprds 25289 rrxip 25290 ovoliunnul 25408 vitalilem5 25513 logtayl 26569 bdayon 28173 nbgr2vtx1edg 29277 nbuhgr2vtx1edgb 29279 mayetes3i 31658 cycpmconjslem2 33112 eulerpartlemsv2 34349 eulerpartlemsv3 34352 eulerpartlemv 34355 eulerpartlemb 34359 poimirlem9 37623 dvasin 37698 dmcoss3 38444 disjALTVid 38747 sticksstones17 42151 sticksstones18 42152 nna4b4nsq 42648 cnvrcl0 43614 corclrcl 43696 trclrelexplem 43700 cotrcltrcl 43714 he0 43773 dvsid 44320 binomcxplemnotnn0 44345 wfaxreg 44990 fourierdlem62 46166 fourierdlem66 46170 isubgr3stgrlem6 47970 |
| Copyright terms: Public domain | W3C validator |