Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqimssi | Structured version Visualization version GIF version |
Description: Infer subclass relationship from equality. (Contributed by NM, 6-Jan-2007.) |
Ref | Expression |
---|---|
eqimssi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eqimssi | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3957 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
3 | 1, 2 | sseqtri 3971 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ⊆ wss 3901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3444 df-in 3908 df-ss 3918 |
This theorem is referenced by: funi 6520 fpr 7086 tz7.48-2 8347 trcl 9589 zorn2lem4 10360 zmin 12789 elfzo1 13542 om2uzf1oi 13778 0trrel 14791 sumsplit 15579 isumless 15656 frlmip 21090 ust0 23476 rrxprds 24658 rrxip 24659 ovoliunnul 24776 vitalilem5 24881 logtayl 25920 nbgr2vtx1edg 28005 nbuhgr2vtx1edgb 28007 mayetes3i 30378 cycpmconjslem2 31707 eulerpartlemsv2 32623 eulerpartlemsv3 32626 eulerpartlemv 32629 eulerpartlemb 32633 poimirlem9 35942 dvasin 36017 dmcoss3 36771 disjALTVid 37073 sticksstones17 40427 sticksstones18 40428 nna4b4nsq 40810 cnvrcl0 41606 corclrcl 41688 trclrelexplem 41692 cotrcltrcl 41706 he0 41765 dvsid 42322 binomcxplemnotnn0 42347 fourierdlem62 44097 fourierdlem66 44101 |
Copyright terms: Public domain | W3C validator |