| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqimssi | Structured version Visualization version GIF version | ||
| Description: Infer subclass relationship from equality. (Contributed by NM, 6-Jan-2007.) |
| Ref | Expression |
|---|---|
| eqimssi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqimssi | ⊢ 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3966 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | sseqtri 3992 | 1 ⊢ 𝐴 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3928 |
| This theorem is referenced by: funi 6532 fpr 7108 tz7.48-2 8387 trcl 9657 zorn2lem4 10428 zmin 12879 elfzo1 13649 om2uzf1oi 13894 0trrel 14923 sumsplit 15710 isumless 15787 rnglidl1 21174 frlmip 21720 ust0 24140 rrxprds 25322 rrxip 25323 ovoliunnul 25441 vitalilem5 25546 logtayl 26602 bdayon 28213 nbgr2vtx1edg 29330 nbuhgr2vtx1edgb 29332 mayetes3i 31708 cycpmconjslem2 33127 eulerpartlemsv2 34342 eulerpartlemsv3 34345 eulerpartlemv 34348 eulerpartlemb 34352 poimirlem9 37616 dvasin 37691 dmcoss3 38437 disjALTVid 38740 sticksstones17 42144 sticksstones18 42145 nna4b4nsq 42641 cnvrcl0 43607 corclrcl 43689 trclrelexplem 43693 cotrcltrcl 43707 he0 43766 dvsid 44313 binomcxplemnotnn0 44338 wfaxreg 44983 fourierdlem62 46159 fourierdlem66 46163 isubgr3stgrlem6 47963 |
| Copyright terms: Public domain | W3C validator |