| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqimssi | Structured version Visualization version GIF version | ||
| Description: Infer subclass relationship from equality. (Contributed by NM, 6-Jan-2007.) |
| Ref | Expression |
|---|---|
| eqimssi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqimssi | ⊢ 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3958 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | sseqtri 3984 | 1 ⊢ 𝐴 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3920 |
| This theorem is referenced by: funi 6514 fpr 7088 tz7.48-2 8364 trcl 9624 zorn2lem4 10393 zmin 12845 elfzo1 13615 om2uzf1oi 13860 0trrel 14888 sumsplit 15675 isumless 15752 rnglidl1 21139 frlmip 21685 ust0 24105 rrxprds 25287 rrxip 25288 ovoliunnul 25406 vitalilem5 25511 logtayl 26567 bdayon 28180 nbgr2vtx1edg 29299 nbuhgr2vtx1edgb 29301 mayetes3i 31677 cycpmconjslem2 33106 eulerpartlemsv2 34342 eulerpartlemsv3 34345 eulerpartlemv 34348 eulerpartlemb 34352 poimirlem9 37629 dvasin 37704 dmcoss3 38450 disjALTVid 38753 sticksstones17 42156 sticksstones18 42157 nna4b4nsq 42653 cnvrcl0 43618 corclrcl 43700 trclrelexplem 43704 cotrcltrcl 43718 he0 43777 dvsid 44324 binomcxplemnotnn0 44349 wfaxreg 44994 fourierdlem62 46169 fourierdlem66 46173 isubgr3stgrlem6 47975 |
| Copyright terms: Public domain | W3C validator |