| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqimssi | Structured version Visualization version GIF version | ||
| Description: Infer subclass relationship from equality. (Contributed by NM, 6-Jan-2007.) |
| Ref | Expression |
|---|---|
| eqimssi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqimssi | ⊢ 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3986 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | sseqtri 4012 | 1 ⊢ 𝐴 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-ss 3948 |
| This theorem is referenced by: funi 6573 fpr 7149 tz7.48-2 8461 trcl 9747 zorn2lem4 10518 zmin 12965 elfzo1 13734 om2uzf1oi 13976 0trrel 15005 sumsplit 15789 isumless 15866 rnglidl1 21198 frlmip 21743 ust0 24163 rrxprds 25346 rrxip 25347 ovoliunnul 25465 vitalilem5 25570 logtayl 26626 bdayon 28230 nbgr2vtx1edg 29334 nbuhgr2vtx1edgb 29336 mayetes3i 31715 cycpmconjslem2 33171 eulerpartlemsv2 34395 eulerpartlemsv3 34398 eulerpartlemv 34401 eulerpartlemb 34405 poimirlem9 37658 dvasin 37733 dmcoss3 38476 disjALTVid 38778 sticksstones17 42181 sticksstones18 42182 nna4b4nsq 42650 cnvrcl0 43616 corclrcl 43698 trclrelexplem 43702 cotrcltrcl 43716 he0 43775 dvsid 44322 binomcxplemnotnn0 44347 wfaxreg 44992 fourierdlem62 46164 fourierdlem66 46168 isubgr3stgrlem6 47950 |
| Copyright terms: Public domain | W3C validator |