Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqimssi | Structured version Visualization version GIF version |
Description: Infer subclass relationship from equality. (Contributed by NM, 6-Jan-2007.) |
Ref | Expression |
---|---|
eqimssi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eqimssi | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3947 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
3 | 1, 2 | sseqtri 3961 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ⊆ wss 3891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-ss 3908 |
This theorem is referenced by: funi 6462 fpr 7020 tz7.48-2 8257 trcl 9469 zorn2lem4 10239 zmin 12666 elfzo1 13418 om2uzf1oi 13654 0trrel 14673 sumsplit 15461 isumless 15538 frlmip 20966 ust0 23352 rrxprds 24534 rrxip 24535 ovoliunnul 24652 vitalilem5 24757 logtayl 25796 nbgr2vtx1edg 27698 nbuhgr2vtx1edgb 27700 mayetes3i 30070 cycpmconjslem2 31401 eulerpartlemsv2 32304 eulerpartlemsv3 32307 eulerpartlemv 32310 eulerpartlemb 32314 poimirlem9 35765 dvasin 35840 dmcoss3 36550 disjALTVid 36842 sticksstones17 40099 sticksstones18 40100 nna4b4nsq 40477 cnvrcl0 41186 corclrcl 41268 trclrelexplem 41272 cotrcltrcl 41286 he0 41345 dvsid 41902 binomcxplemnotnn0 41927 fourierdlem62 43663 fourierdlem66 43667 |
Copyright terms: Public domain | W3C validator |