Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqimssi | Structured version Visualization version GIF version |
Description: Infer subclass relationship from equality. (Contributed by NM, 6-Jan-2007.) |
Ref | Expression |
---|---|
eqimssi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eqimssi | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3948 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
3 | 1, 2 | sseqtri 3962 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊆ wss 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-in 3899 df-ss 3909 |
This theorem is referenced by: funi 6495 fpr 7058 tz7.48-2 8304 trcl 9534 zorn2lem4 10305 zmin 12734 elfzo1 13487 om2uzf1oi 13723 0trrel 14741 sumsplit 15529 isumless 15606 frlmip 21034 ust0 23420 rrxprds 24602 rrxip 24603 ovoliunnul 24720 vitalilem5 24825 logtayl 25864 nbgr2vtx1edg 27766 nbuhgr2vtx1edgb 27768 mayetes3i 30140 cycpmconjslem2 31471 eulerpartlemsv2 32374 eulerpartlemsv3 32377 eulerpartlemv 32380 eulerpartlemb 32384 poimirlem9 35834 dvasin 35909 dmcoss3 36667 disjALTVid 36969 sticksstones17 40319 sticksstones18 40320 nna4b4nsq 40692 cnvrcl0 41446 corclrcl 41528 trclrelexplem 41532 cotrcltrcl 41546 he0 41605 dvsid 42162 binomcxplemnotnn0 42187 fourierdlem62 43938 fourierdlem66 43942 |
Copyright terms: Public domain | W3C validator |