![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqimssi | Structured version Visualization version GIF version |
Description: Infer subclass relationship from equality. (Contributed by NM, 6-Jan-2007.) |
Ref | Expression |
---|---|
eqimssi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eqimssi | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4031 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
3 | 1, 2 | sseqtri 4045 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 |
This theorem is referenced by: funi 6610 fpr 7188 tz7.48-2 8498 trcl 9797 zorn2lem4 10568 zmin 13009 elfzo1 13766 om2uzf1oi 14004 0trrel 15030 sumsplit 15816 isumless 15893 rnglidl1 21265 frlmip 21821 ust0 24249 rrxprds 25442 rrxip 25443 ovoliunnul 25561 vitalilem5 25666 logtayl 26720 nbgr2vtx1edg 29385 nbuhgr2vtx1edgb 29387 mayetes3i 31761 cycpmconjslem2 33148 eulerpartlemsv2 34323 eulerpartlemsv3 34326 eulerpartlemv 34329 eulerpartlemb 34333 poimirlem9 37589 dvasin 37664 dmcoss3 38409 disjALTVid 38711 sticksstones17 42120 sticksstones18 42121 nna4b4nsq 42615 cnvrcl0 43587 corclrcl 43669 trclrelexplem 43673 cotrcltrcl 43687 he0 43746 dvsid 44300 binomcxplemnotnn0 44325 fourierdlem62 46089 fourierdlem66 46093 |
Copyright terms: Public domain | W3C validator |