| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqimssi | Structured version Visualization version GIF version | ||
| Description: Infer subclass relationship from equality. (Contributed by NM, 6-Jan-2007.) |
| Ref | Expression |
|---|---|
| eqimssi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqimssi | ⊢ 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3952 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | sseqtri 3978 | 1 ⊢ 𝐴 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3914 |
| This theorem is referenced by: funi 6513 fpr 7087 tz7.48-2 8361 trcl 9618 zorn2lem4 10390 zmin 12842 elfzo1 13612 om2uzf1oi 13860 0trrel 14888 sumsplit 15675 isumless 15752 rnglidl1 21169 frlmip 21715 ust0 24135 rrxprds 25316 rrxip 25317 ovoliunnul 25435 vitalilem5 25540 logtayl 26596 bdayon 28209 nbgr2vtx1edg 29328 nbuhgr2vtx1edgb 29330 mayetes3i 31709 cycpmconjslem2 33124 eulerpartlemsv2 34371 eulerpartlemsv3 34374 eulerpartlemv 34377 eulerpartlemb 34381 poimirlem9 37668 dvasin 37743 dmcoss3 38554 disjALTVid 38852 sticksstones17 42255 sticksstones18 42256 nna4b4nsq 42752 cnvrcl0 43717 corclrcl 43799 trclrelexplem 43803 cotrcltrcl 43817 he0 43876 dvsid 44423 binomcxplemnotnn0 44448 wfaxreg 45092 fourierdlem62 46265 fourierdlem66 46269 isubgr3stgrlem6 48070 |
| Copyright terms: Public domain | W3C validator |