| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqimssi | Structured version Visualization version GIF version | ||
| Description: Infer subclass relationship from equality. (Contributed by NM, 6-Jan-2007.) |
| Ref | Expression |
|---|---|
| eqimssi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqimssi | ⊢ 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3986 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | sseqtri 4012 | 1 ⊢ 𝐴 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 df-ss 3948 |
| This theorem is referenced by: funi 6578 fpr 7154 tz7.48-2 8464 trcl 9750 zorn2lem4 10521 zmin 12968 elfzo1 13734 om2uzf1oi 13976 0trrel 15002 sumsplit 15786 isumless 15863 rnglidl1 21204 frlmip 21752 ust0 24174 rrxprds 25359 rrxip 25360 ovoliunnul 25478 vitalilem5 25583 logtayl 26638 nbgr2vtx1edg 29295 nbuhgr2vtx1edgb 29297 mayetes3i 31676 cycpmconjslem2 33114 eulerpartlemsv2 34319 eulerpartlemsv3 34322 eulerpartlemv 34325 eulerpartlemb 34329 poimirlem9 37595 dvasin 37670 dmcoss3 38413 disjALTVid 38715 sticksstones17 42123 sticksstones18 42124 nna4b4nsq 42633 cnvrcl0 43600 corclrcl 43682 trclrelexplem 43686 cotrcltrcl 43700 he0 43759 dvsid 44307 binomcxplemnotnn0 44332 wfaxreg 44974 fourierdlem62 46140 fourierdlem66 46144 isubgr3stgrlem6 47896 |
| Copyright terms: Public domain | W3C validator |