| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqimssi | Structured version Visualization version GIF version | ||
| Description: Infer subclass relationship from equality. (Contributed by NM, 6-Jan-2007.) |
| Ref | Expression |
|---|---|
| eqimssi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqimssi | ⊢ 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3972 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | sseqtri 3998 | 1 ⊢ 𝐴 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3934 |
| This theorem is referenced by: funi 6551 fpr 7129 tz7.48-2 8413 trcl 9688 zorn2lem4 10459 zmin 12910 elfzo1 13680 om2uzf1oi 13925 0trrel 14954 sumsplit 15741 isumless 15818 rnglidl1 21149 frlmip 21694 ust0 24114 rrxprds 25296 rrxip 25297 ovoliunnul 25415 vitalilem5 25520 logtayl 26576 bdayon 28180 nbgr2vtx1edg 29284 nbuhgr2vtx1edgb 29286 mayetes3i 31665 cycpmconjslem2 33119 eulerpartlemsv2 34356 eulerpartlemsv3 34359 eulerpartlemv 34362 eulerpartlemb 34366 poimirlem9 37630 dvasin 37705 dmcoss3 38451 disjALTVid 38754 sticksstones17 42158 sticksstones18 42159 nna4b4nsq 42655 cnvrcl0 43621 corclrcl 43703 trclrelexplem 43707 cotrcltrcl 43721 he0 43780 dvsid 44327 binomcxplemnotnn0 44352 wfaxreg 44997 fourierdlem62 46173 fourierdlem66 46177 isubgr3stgrlem6 47974 |
| Copyright terms: Public domain | W3C validator |