MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ust0 Structured version   Visualization version   GIF version

Theorem ust0 24249
Description: The unique uniform structure of the empty set is the empty set. Remark 3 of [BourbakiTop1] p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017.)
Assertion
Ref Expression
ust0 (UnifOn‘∅) = {{∅}}

Proof of Theorem ust0
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5325 . . . . . . . 8 ∅ ∈ V
2 isust 24233 . . . . . . . 8 (∅ ∈ V → (𝑢 ∈ (UnifOn‘∅) ↔ (𝑢 ⊆ 𝒫 (∅ × ∅) ∧ (∅ × ∅) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (∅ × ∅)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ ∅) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))))
31, 2ax-mp 5 . . . . . . 7 (𝑢 ∈ (UnifOn‘∅) ↔ (𝑢 ⊆ 𝒫 (∅ × ∅) ∧ (∅ × ∅) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (∅ × ∅)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ ∅) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣))))
43simp1bi 1145 . . . . . 6 (𝑢 ∈ (UnifOn‘∅) → 𝑢 ⊆ 𝒫 (∅ × ∅))
5 0xp 5798 . . . . . . . 8 (∅ × ∅) = ∅
65pweqi 4638 . . . . . . 7 𝒫 (∅ × ∅) = 𝒫 ∅
7 pw0 4837 . . . . . . 7 𝒫 ∅ = {∅}
86, 7eqtri 2768 . . . . . 6 𝒫 (∅ × ∅) = {∅}
94, 8sseqtrdi 4059 . . . . 5 (𝑢 ∈ (UnifOn‘∅) → 𝑢 ⊆ {∅})
10 ustbasel 24236 . . . . . . 7 (𝑢 ∈ (UnifOn‘∅) → (∅ × ∅) ∈ 𝑢)
115, 10eqeltrrid 2849 . . . . . 6 (𝑢 ∈ (UnifOn‘∅) → ∅ ∈ 𝑢)
1211snssd 4834 . . . . 5 (𝑢 ∈ (UnifOn‘∅) → {∅} ⊆ 𝑢)
139, 12eqssd 4026 . . . 4 (𝑢 ∈ (UnifOn‘∅) → 𝑢 = {∅})
14 velsn 4664 . . . 4 (𝑢 ∈ {{∅}} ↔ 𝑢 = {∅})
1513, 14sylibr 234 . . 3 (𝑢 ∈ (UnifOn‘∅) → 𝑢 ∈ {{∅}})
1615ssriv 4012 . 2 (UnifOn‘∅) ⊆ {{∅}}
178eqimss2i 4070 . . . 4 {∅} ⊆ 𝒫 (∅ × ∅)
181snid 4684 . . . . 5 ∅ ∈ {∅}
195, 18eqeltri 2840 . . . 4 (∅ × ∅) ∈ {∅}
2018a1i 11 . . . . . 6 (∅ ⊆ ∅ → ∅ ∈ {∅})
218raleqi 3332 . . . . . . 7 (∀𝑤 ∈ 𝒫 (∅ × ∅)(∅ ⊆ 𝑤𝑤 ∈ {∅}) ↔ ∀𝑤 ∈ {∅} (∅ ⊆ 𝑤𝑤 ∈ {∅}))
22 sseq2 4035 . . . . . . . . 9 (𝑤 = ∅ → (∅ ⊆ 𝑤 ↔ ∅ ⊆ ∅))
23 eleq1 2832 . . . . . . . . 9 (𝑤 = ∅ → (𝑤 ∈ {∅} ↔ ∅ ∈ {∅}))
2422, 23imbi12d 344 . . . . . . . 8 (𝑤 = ∅ → ((∅ ⊆ 𝑤𝑤 ∈ {∅}) ↔ (∅ ⊆ ∅ → ∅ ∈ {∅})))
251, 24ralsn 4705 . . . . . . 7 (∀𝑤 ∈ {∅} (∅ ⊆ 𝑤𝑤 ∈ {∅}) ↔ (∅ ⊆ ∅ → ∅ ∈ {∅}))
2621, 25bitri 275 . . . . . 6 (∀𝑤 ∈ 𝒫 (∅ × ∅)(∅ ⊆ 𝑤𝑤 ∈ {∅}) ↔ (∅ ⊆ ∅ → ∅ ∈ {∅}))
2720, 26mpbir 231 . . . . 5 𝑤 ∈ 𝒫 (∅ × ∅)(∅ ⊆ 𝑤𝑤 ∈ {∅})
28 inidm 4248 . . . . . . 7 (∅ ∩ ∅) = ∅
2928, 18eqeltri 2840 . . . . . 6 (∅ ∩ ∅) ∈ {∅}
30 ineq2 4235 . . . . . . . 8 (𝑤 = ∅ → (∅ ∩ 𝑤) = (∅ ∩ ∅))
3130eleq1d 2829 . . . . . . 7 (𝑤 = ∅ → ((∅ ∩ 𝑤) ∈ {∅} ↔ (∅ ∩ ∅) ∈ {∅}))
321, 31ralsn 4705 . . . . . 6 (∀𝑤 ∈ {∅} (∅ ∩ 𝑤) ∈ {∅} ↔ (∅ ∩ ∅) ∈ {∅})
3329, 32mpbir 231 . . . . 5 𝑤 ∈ {∅} (∅ ∩ 𝑤) ∈ {∅}
34 res0 6013 . . . . . . 7 ( I ↾ ∅) = ∅
3534eqimssi 4069 . . . . . 6 ( I ↾ ∅) ⊆ ∅
36 cnv0 6172 . . . . . . 7 ∅ = ∅
3736, 18eqeltri 2840 . . . . . 6 ∅ ∈ {∅}
38 0trrel 15030 . . . . . . 7 (∅ ∘ ∅) ⊆ ∅
39 id 22 . . . . . . . . . 10 (𝑤 = ∅ → 𝑤 = ∅)
4039, 39coeq12d 5889 . . . . . . . . 9 (𝑤 = ∅ → (𝑤𝑤) = (∅ ∘ ∅))
4140sseq1d 4040 . . . . . . . 8 (𝑤 = ∅ → ((𝑤𝑤) ⊆ ∅ ↔ (∅ ∘ ∅) ⊆ ∅))
421, 41rexsn 4706 . . . . . . 7 (∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ ∅ ↔ (∅ ∘ ∅) ⊆ ∅)
4338, 42mpbir 231 . . . . . 6 𝑤 ∈ {∅} (𝑤𝑤) ⊆ ∅
4435, 37, 433pm3.2i 1339 . . . . 5 (( I ↾ ∅) ⊆ ∅ ∧ ∅ ∈ {∅} ∧ ∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ ∅)
45 sseq1 4034 . . . . . . . . 9 (𝑣 = ∅ → (𝑣𝑤 ↔ ∅ ⊆ 𝑤))
4645imbi1d 341 . . . . . . . 8 (𝑣 = ∅ → ((𝑣𝑤𝑤 ∈ {∅}) ↔ (∅ ⊆ 𝑤𝑤 ∈ {∅})))
4746ralbidv 3184 . . . . . . 7 (𝑣 = ∅ → (∀𝑤 ∈ 𝒫 (∅ × ∅)(𝑣𝑤𝑤 ∈ {∅}) ↔ ∀𝑤 ∈ 𝒫 (∅ × ∅)(∅ ⊆ 𝑤𝑤 ∈ {∅})))
48 ineq1 4234 . . . . . . . . 9 (𝑣 = ∅ → (𝑣𝑤) = (∅ ∩ 𝑤))
4948eleq1d 2829 . . . . . . . 8 (𝑣 = ∅ → ((𝑣𝑤) ∈ {∅} ↔ (∅ ∩ 𝑤) ∈ {∅}))
5049ralbidv 3184 . . . . . . 7 (𝑣 = ∅ → (∀𝑤 ∈ {∅} (𝑣𝑤) ∈ {∅} ↔ ∀𝑤 ∈ {∅} (∅ ∩ 𝑤) ∈ {∅}))
51 sseq2 4035 . . . . . . . 8 (𝑣 = ∅ → (( I ↾ ∅) ⊆ 𝑣 ↔ ( I ↾ ∅) ⊆ ∅))
52 cnveq 5898 . . . . . . . . 9 (𝑣 = ∅ → 𝑣 = ∅)
5352eleq1d 2829 . . . . . . . 8 (𝑣 = ∅ → (𝑣 ∈ {∅} ↔ ∅ ∈ {∅}))
54 sseq2 4035 . . . . . . . . 9 (𝑣 = ∅ → ((𝑤𝑤) ⊆ 𝑣 ↔ (𝑤𝑤) ⊆ ∅))
5554rexbidv 3185 . . . . . . . 8 (𝑣 = ∅ → (∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ 𝑣 ↔ ∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ ∅))
5651, 53, 553anbi123d 1436 . . . . . . 7 (𝑣 = ∅ → ((( I ↾ ∅) ⊆ 𝑣𝑣 ∈ {∅} ∧ ∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ 𝑣) ↔ (( I ↾ ∅) ⊆ ∅ ∧ ∅ ∈ {∅} ∧ ∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ ∅)))
5747, 50, 563anbi123d 1436 . . . . . 6 (𝑣 = ∅ → ((∀𝑤 ∈ 𝒫 (∅ × ∅)(𝑣𝑤𝑤 ∈ {∅}) ∧ ∀𝑤 ∈ {∅} (𝑣𝑤) ∈ {∅} ∧ (( I ↾ ∅) ⊆ 𝑣𝑣 ∈ {∅} ∧ ∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ 𝑣)) ↔ (∀𝑤 ∈ 𝒫 (∅ × ∅)(∅ ⊆ 𝑤𝑤 ∈ {∅}) ∧ ∀𝑤 ∈ {∅} (∅ ∩ 𝑤) ∈ {∅} ∧ (( I ↾ ∅) ⊆ ∅ ∧ ∅ ∈ {∅} ∧ ∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ ∅))))
581, 57ralsn 4705 . . . . 5 (∀𝑣 ∈ {∅} (∀𝑤 ∈ 𝒫 (∅ × ∅)(𝑣𝑤𝑤 ∈ {∅}) ∧ ∀𝑤 ∈ {∅} (𝑣𝑤) ∈ {∅} ∧ (( I ↾ ∅) ⊆ 𝑣𝑣 ∈ {∅} ∧ ∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ 𝑣)) ↔ (∀𝑤 ∈ 𝒫 (∅ × ∅)(∅ ⊆ 𝑤𝑤 ∈ {∅}) ∧ ∀𝑤 ∈ {∅} (∅ ∩ 𝑤) ∈ {∅} ∧ (( I ↾ ∅) ⊆ ∅ ∧ ∅ ∈ {∅} ∧ ∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ ∅)))
5927, 33, 44, 58mpbir3an 1341 . . . 4 𝑣 ∈ {∅} (∀𝑤 ∈ 𝒫 (∅ × ∅)(𝑣𝑤𝑤 ∈ {∅}) ∧ ∀𝑤 ∈ {∅} (𝑣𝑤) ∈ {∅} ∧ (( I ↾ ∅) ⊆ 𝑣𝑣 ∈ {∅} ∧ ∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ 𝑣))
60 isust 24233 . . . . 5 (∅ ∈ V → ({∅} ∈ (UnifOn‘∅) ↔ ({∅} ⊆ 𝒫 (∅ × ∅) ∧ (∅ × ∅) ∈ {∅} ∧ ∀𝑣 ∈ {∅} (∀𝑤 ∈ 𝒫 (∅ × ∅)(𝑣𝑤𝑤 ∈ {∅}) ∧ ∀𝑤 ∈ {∅} (𝑣𝑤) ∈ {∅} ∧ (( I ↾ ∅) ⊆ 𝑣𝑣 ∈ {∅} ∧ ∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ 𝑣)))))
611, 60ax-mp 5 . . . 4 ({∅} ∈ (UnifOn‘∅) ↔ ({∅} ⊆ 𝒫 (∅ × ∅) ∧ (∅ × ∅) ∈ {∅} ∧ ∀𝑣 ∈ {∅} (∀𝑤 ∈ 𝒫 (∅ × ∅)(𝑣𝑤𝑤 ∈ {∅}) ∧ ∀𝑤 ∈ {∅} (𝑣𝑤) ∈ {∅} ∧ (( I ↾ ∅) ⊆ 𝑣𝑣 ∈ {∅} ∧ ∃𝑤 ∈ {∅} (𝑤𝑤) ⊆ 𝑣))))
6217, 19, 59, 61mpbir3an 1341 . . 3 {∅} ∈ (UnifOn‘∅)
63 snssi 4833 . . 3 ({∅} ∈ (UnifOn‘∅) → {{∅}} ⊆ (UnifOn‘∅))
6462, 63ax-mp 5 . 2 {{∅}} ⊆ (UnifOn‘∅)
6516, 64eqssi 4025 1 (UnifOn‘∅) = {{∅}}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   I cid 5592   × cxp 5698  ccnv 5699  cres 5702  ccom 5704  cfv 6573  UnifOncust 24229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fv 6581  df-ust 24230
This theorem is referenced by:  isusp  24291
  Copyright terms: Public domain W3C validator