MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfopab2 Structured version   Visualization version   GIF version

Theorem dfopab2 7865
Description: A way to define an ordered-pair class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfopab2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∈ (V × V) ∣ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑}
Distinct variable groups:   𝜑,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem dfopab2
StepHypRef Expression
1 nfsbc1v 3731 . . . . 5 𝑥[(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑
2119.41 2231 . . . 4 (∃𝑥(∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑) ↔ (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑))
3 sbcopeq1a 7863 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → ([(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑𝜑))
43pm5.32i 574 . . . . . . 7 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
54exbii 1851 . . . . . 6 (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
6 nfcv 2906 . . . . . . . 8 𝑦(1st𝑧)
7 nfsbc1v 3731 . . . . . . . 8 𝑦[(2nd𝑧) / 𝑦]𝜑
86, 7nfsbcw 3733 . . . . . . 7 𝑦[(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑
9819.41 2231 . . . . . 6 (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑) ↔ (∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑))
105, 9bitr3i 276 . . . . 5 (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑))
1110exbii 1851 . . . 4 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥(∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑))
12 elvv 5652 . . . . 5 (𝑧 ∈ (V × V) ↔ ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩)
1312anbi1i 623 . . . 4 ((𝑧 ∈ (V × V) ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑) ↔ (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑))
142, 11, 133bitr4i 302 . . 3 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑧 ∈ (V × V) ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑))
1514abbii 2809 . 2 {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑧 ∣ (𝑧 ∈ (V × V) ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑)}
16 df-opab 5133 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
17 df-rab 3072 . 2 {𝑧 ∈ (V × V) ∣ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑} = {𝑧 ∣ (𝑧 ∈ (V × V) ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑)}
1815, 16, 173eqtr4i 2776 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∈ (V × V) ∣ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wex 1783  wcel 2108  {cab 2715  {crab 3067  Vcvv 3422  [wsbc 3711  cop 4564  {copab 5132   × cxp 5578  cfv 6418  1st c1st 7802  2nd c2nd 7803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-1st 7804  df-2nd 7805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator